
Ceph Snapshots: Diving into Deep Waters

Greg Farnum – Red hat
Vault – 2017.03.23

2

● Greg Farnum

● Principal Software Engineer, Red Hat

● gfarnum@redhat.com

Hi, I’m Greg

3

● RADOS, RBD, CephFS: (Lightning) overview and how writes happen

● The (self-managed) snapshots interface

● A diversion into pool snapshots

● Snapshots in RBD, CephFS

● RADOS/OSD Snapshot implementation, pain points

Outline

4

Ceph’s Past & Present

● Then: UC Santa Cruz Storage Research
Systems Center

● Long-term research project in petabyte-
scale storage

● trying to develop a Lustre successor.

● Now: Red Hat, a commercial open-source
software & support provider you might have
heard of :)

(Mirantis, SuSE, Canonical, 42on, Hastexo, ...)

● Building a business; customers in virtual block
devices and object storage

● ...and reaching for filesystem users!

5

Ceph Projects

RGW
S3 and Swift compatible

object storage with object
versioning, multi-site

federation, and replication

LIBRADOS
A library allowing apps to direct access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomic, distributed object store comprised of

self-healing, self-managing, intelligent storage nodes (OSDs) and lightweight monitors (Mons)

RBD
A virtual block device with
snapshots, copy-on-write

clones, and multi-site
replication

CEPHFS
A distributed POSIX file
system with coherent

caches and snapshots on
any directory

OBJECT BLOCK FILE

RADOS: Overview

7

RADOS Components

7

OSDs:
 10s to 10000s in a cluster
 One per disk (or one per SSD, RAID group…)
 Serve stored objects to clients
 Intelligently peer for replication & recovery

Monitors:
 Maintain cluster membership and state
 Provide consensus for distributed decision-

making
 Small, odd number
 These do not serve stored objects to clients

M

8

Object Storage Daemons

8

FS

DISK

OSD

DISK

OSD

FS

DISK

OSD

FS

DISK

OSD

FS

M

M

M

9

CRUSH: Dynamic Data Placement

9

CRUSH:
 Pseudo-random placement algorithm

 Fast calculation, no lookup
 Repeatable, deterministic

 Statistically uniform distribution
 Stable mapping

 Limited data migration on change
 Rule-based configuration

 Infrastructure topology aware
 Adjustable replication
 Weighting

10

DATA IS ORGANIZED INTO POOLS

10

CLUSTER

OBJECTS

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

POOLS
(CONTAINING PGs)

10

01

11

01

10

01

01

10

01

10

10

01

11

01

10

01

10 01 10 11

01

11

01

10

10

01

01

01

10

10

01

01

POOL
A

POOL
B

POOL
C

POOL
D

OBJECTS

OBJECTS

OBJECTS

11

L

librados: RADOS Access for Apps

11

LIBRADOS:
 Direct access to RADOS for applications
 C, C++, Python, PHP, Java, Erlang
 Direct access to storage nodes
 No HTTP overhead

 Rich object API
 Bytes, attributes, key/value data
 Partial overwrite of existing data
 Single-object compound atomic operations
 RADOS classes (stored procedures)

12

aio_write(const object_t &oid, AioCompletionImpl *c,

const bufferlist& bl, size_t len, uint64_t off);

c->wait_for_safe();

write(const std::string& oid, bufferlist& bl, size_t len, uint64_t off)

RADOS: The Write Path (user)

13

L

RADOS: The Write Path (Network)

13

Client Primary Replica

14

● Queue write for PG

● Lock PG

● Assign order to write op

● Package it for persistent storage

– Find current object state, etc

● Send to replica op

● Send to local persistent storage

● Unlock PG

● Wait for commits from persistent storage and replicas

● Send commit back to client

RADOS: The Write Path (OSD)

RBD: Overview

16

STORING VIRTUAL DISKS

16

M M

RADOS CLUSTER

HYPERVISOR
LIBRBD

VM

17

RBD STORES VIRTUAL DISKS

17

RADOS BLOCK DEVICE:
 Storage of disk images in RADOS
 Decouples VMs from host
 Images are striped across the cluster (pool)
 Snapshots
 Copy-on-write clones
 Support in:

 Mainline Linux Kernel (2.6.39+)
 Qemu/KVM, native Xen coming soon
 OpenStack, CloudStack, Nebula, Proxmox

18

ssize_t Image::write(uint64_t ofs, size_t len, bufferlist& bl)

int Image::aio_write(uint64_t off, size_t len, bufferlist& bl,

 RBD::AioCompletion *c)

RBD: The Write Path

CephFS: Overview

20

LINUX HOST

M M

M

RADOS CLUSTER

KERNEL MODULE

datametadata 01
10

Ceph-fuse, samba,
Ganesha

21

extern "C" int ceph_write(struct ceph_mount_info *cmount, int fd, const
char *buf, int64_t size, int64_t offset)

CephFS: The Write Path (User)

22

L

CephFS: The Write Path (Network)

22

Client MDS OSD

23

● Request write capability from MDS if not already present

● Get “cap” from MDS

● Write new data to “ObjectCacher”

● (Inline or later when flushing)

– Send write to OSD

– Receive commit from OSD

● Return to caller

CephFS: The Write Path

The Origin of Snapshots

25

[john@schist backups]$ touch history
[john@schist backups]$ cd .snap
[john@schist .snap]$ mkdir snap1
[john@schist .snap]$ cd ..
[john@schist backups]$ rm -f history
[john@schist backups]$ ls
[john@schist backups]$ ls .snap/snap1
history
Deleted file still there in the snapshot!

26

● For CephFS

– Arbitrary subtrees: lots of seemingly-unrelated objects snapshotting
together

● Must be cheap to create

● We have external storage for any desired snapshot metadata

Snapshot Design: Goals & Limits

27

● Snapshots are per-object

● Driven on object write

– So snaps which logically apply to any object don’t touch it if it’s not written

● Very skinny data

– per-object list of existing snaps

– Global list of deleted snaps

Snapshot Design: Outcome

RADOS: “Self-managed” snapshots

29

int set_snap_write_context(snapid_t seq, vector<snapid_t>& snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid, AioCompletionImpl
*c);

int selfmanaged_snap_rollback_object(const object_t& oid,
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface

30

“snapids” are allocated by incrementing the “snapid” and “snap_seq”
members of the per-pool “pg_pool_t” OSDMap struct

Allocating Self-managed Snapshots

31

L

Allocating Self-managed Snapshots

31

Client Monitor

M M

Peons

Disk
commit

32

L

Allocating Self-managed Snapshots

32

Client Monitor

M M

Peons

Disk
commit

...or just make them up yourself (CephFS does so in the MDS)

33

int set_snap_write_context(snapid_t seq, vector<snapid_t>&
snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid, AioCompletionImpl
*c);

int selfmanaged_snap_rollback_object(const object_t& oid,
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface

34

L

Writing With Snapshots

34

Client Primary Replica

write(const std::string& oid, bufferlist& bl, size_t len, uint64_t off)

35

● Queue write for PG

● Lock PG

● Assign order to write op

● Package it for persistent storage

– Find current object state, etc

– make_writeable()

● Send to replica op

● Send to local persistent storage

● Wait for commits from persistent storage and replicas

● Send commit back to client

Snapshots: The OSD Path

36

● The PrimaryLogPG::make_writeable() function

– Is the “SnapContext” newer than the object already has on disk?

– (Create a transaction to) clone the existing object

– Update the stats and clone range overlap information

● PG::append_log() calls update_snap_map()

– Updates the “SnapMapper”, which maintains LevelDB entries from:

● snapid → object
● And Object → snapid

Snapshots: The OSD Path

37

struct SnapSet {

 snapid_t seq;

 bool head_exists;

 vector<snapid_t> snaps; // descending

 vector<snapid_t> clones; // ascending

 map<snapid_t, interval_set<uint64_t> > clone_overlap;

 map<snapid_t, uint64_t> clone_size;

}

● This is attached to the “HEAD” object in an xattr

Snapshots: OSD Data Structures

RADOS: Pool Snapshots :(

39

● Make snapshots “easy” for admins

● Leverage the existing per-object implementation

– Overlay the correct SnapContext automatically on writes

– Spread that SnapContext via the OSDMap

Pool Snaps: Desire

40

 int snap_list(vector<uint64_t> *snaps);

 int snap_lookup(const char *name, uint64_t *snapid);

 int snap_get_name(uint64_t snapid, std::string *s);

 int snap_get_stamp(uint64_t snapid, time_t *t);

 int snap_create(const char* snapname);

 int snap_remove(const char* snapname);

 int rollback(const object_t& oid, const char *snapName);

– Note how that’s still per-object!

Librados pool snaps interface

41

● “Spread that SnapContext via the OSDMap”

– It’s not a point-in-time snapshot

– SnapContext spread virally as OSDMaps get pushed out

– No guaranteed temporal order between two different RBD volumes in the
pool – even when attached to the same VM :(

● Inflates the OSDMap size:

per-pool map<snapid_t, pool_snap_info_t> snaps;

struct pool_snap_info_t { snapid_t snapid; utime_t stamp; string name; }

● They are unlikely to solve a problem you want

Pool Snaps: Reality

42

● “Overlay the correct SnapContext automatically on writes”

– No sensible way to merge that with a self-managed SnapContext

– ...so we don’t: pick one or the other for a pool

All in all, pool snapshots are unlikely to usefully solve any problems.

Pool Snaps: Reality

RBD: Snapshot Structures

44

RBD Snapshots: Data Structures

struct cls_rbd_snap {

 snapid_t id;

 string name;

 uint64_t image_size;

 uint64_t features;

 uint8_t protection_status;

 cls_rbd_parent parent;

 uint64_t flags;

 utime_t timestamp;

 cls::rbd::SnapshotNamespaceOnDisk snapshot_namespace;

}

45

RBD Snapshots: Data Structures

● cls_rbd_snap for every snapshot

● Stored in “omap” (read: LevelDB) key-value space on the RBD volume’s
header object

● RBD object class exposes get_snapcontext() function, called on mount

● RBD clients “watch” on the header, get “notify” when a new snap is
created to update themselves

CephFS: Snapshot Structures

47

● For CephFS

– Arbitrary subtrees: lots of seemingly-unrelated objects snapshotting
together

● Must be cheap to create

● We have external storage for any desired snapshot metadata

CephFS Snapshots: Goals & Limits

48

CephFS Snapshots: Memory

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq; // a version/seq # for changes to _this_ realm.

snapid_t created; // when this realm was created.

snapid_t last_created; // last snap created in _this_ realm.

snapid_t last_destroyed; // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents; // key is "last" (or
NOSNAP)

49

/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms

50

/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms

51

/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms

52

/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms

53

CephFS Snapshots: SnapRealms

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq; // a version/seq # for changes to _this_ realm.

snapid_t created; // when this realm was created.

snapid_t last_created; // last snap created in _this_ realm.

snapid_t last_destroyed; // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents; // key is "last" (or NOSNAP)

Construct the SnapContext!

54

CephFS Snapshots: Memory

● All “CInodes” have “old_inode_t” map representing its past states for
snapshots

struct old_inode_t {

 snapid_t first;

 inode_t inode;

 std::map<string,bufferptr> xattrs;

}

55

CephFS Snapshots: Disk

● SnapRealms are encoded as part of inode

● Snapshotted metadata stored as old_inode_t map in memory/disk

● Snapshotted data stored in RADOS object self-managed snapshots

/<v2>/home<v5>/greg<v9>/foo

foo -> ino 1342, 4 MB, [<1>,<3>,<10>]

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

1342.0/HEAD

56

CephFS Snapshots

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0/HEAD

/<v1>/home<v3>/greg<v7>/foo

1342.0/1

CephFS: Snapshot Pain

58

CephFS Pain: Opening past parents

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq; // a version/seq # for changes to _this_ realm.

snapid_t created; // when this realm was created.

snapid_t last_created; // last snap created in _this_ realm.

snapid_t last_destroyed; // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;

59

CephFS Pain: Opening past parents

● To construct the SnapContext for a write, we need the all the
SnapRealms it has ever participated in

– Because it could have been logically snapshotted in an old location but not
written to since, and a new write must reflect that old location’s snapid

● So we must open all the directories the file has been a member of!

– With a single MDS, this isn’t too hard

– With multi-MDS, this can be very difficult in some scenarios

● We may not know who is “authoritative” for a directory under all
failure and recovery scenarios

● If there’s been a disaster metadata may be inaccessible, but we don’t
have mechanisms for holding operations and retrying when
“unrelated” metadata is inaccessible

60

CephFS Pain: Opening past parents

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq; // a version/seq # for changes to _this_ realm.

snapid_t created; // when this realm was created.

snapid_t last_created; // last snap created in _this_ realm.

snapid_t last_destroyed; // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;

Why not store snaps in all descendants
Instead of maintaining ancestor links?

61

CephFS Pain: Eliminating past parents

● The MDS opens an inode for any operation performed on it

– This includes its SnapRealm

● So we can merge snapid lists down whenever we open an inode that has
a new SnapRealm

● So if we rename a directory/file into a new location; its SnapRealm
already contains all the right snapids and then we don’t need a link to
the past!

● I got this almost completely finished

– Reduced code line count

– Much simpler snapshot tracking code

– But….

62

CephFS Pain: Hard links

● Hard links and snapshots do not interact :(

● They should!

● That means we need to merge SnapRealms from all the linked parents
of an inode

– And this is the exact same problem we have with past_parents

– Since we need to open “remote” inodes correctly, avoiding it in the
common case doesn’t help us

● So, back to debugging and more edge cases

RADOS: Deleting Snapshots

64

int set_snap_write_context(snapid_t seq, vector<snapid_t>& snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid,
AioCompletionImpl *c);

int selfmanaged_snap_rollback_object(const object_t& oid,
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface

65

L

“Deleting” Snapshots (Client)

65

Client Monitor

M M

Peons

Disk
commit

66

● Generate new OSDMap updating pg_pool_t

interval_set<snapid_t> removed_snaps;

● This is really space-efficient if you consistently delete your oldest
snapshots!

– Rather less so if you keep every other one forever

● ...and this looks sort of like some sensible RBD snapshot strategies
(daily for a week, weekly for a month, monthly for a year)

Deleting Snapshots (Monitor)

67

● OSD advances its OSDMap

● Asynchronously:

– List objects with that snapshot via “SnapMapper”

● int get_next_objects_to_trim(snapid_t snap, unsigned max, vector<hobject_t>
*out);

– For each object:

● “unlink” object clone for that snapshot – 1 coalescable IO

– Sometimes clones belong to multiple snaps so we might not delete right away
● Update object HEAD’s “SnapSet” xattr – 1+ unique IO
● Remove SnapMapper’s LevelDB entries for that object/snap pair – 1 coalescable IO
● Write down “PGLog” entry recording clone removal – 1 coalescable IO

– Note that if you trim a bunch of snaps, you do this for each one – no coalescing it down
to one pass on each object :(

Deleting Snapshots (OSD)

68

● So that’s at least 1 IO per object in a snap

– potentially a lot more if we needed to fetch KV data off disk, didn’t have
directories cached, etc

– This will be a lot better in BlueStore! It’s just coalescable metadata ops

● Ouch!

● Even worse: throttling is hard

– Why is a whole talk on its own

– It’s very difficult to not overwhelm clusters if you do a lot of trimming at
once

Deleting Snapshots (OSD)

RADOS: Alternate Approaches

70

● Maintain a per snapid directory with hard links!

– Every clone is linked into (all) its snapid directory(s)

– Just list the directory to identify them, then

● update the object’s SnapSet
● Unlink from all relevant directories

● Turns out this destroys locality, in addition to being icky code

Past: Deleting Snapshots

71

● For instance, LVM snapshots?

● We don’t want to snapshot everything on an OSD at once

– No implicit “consistency groups” across RBD volumes, for instance

● So we ultimately need a snap→object mapping, since each snap touches
so few objects

Present: Why per-object?

72

● Update internal interfaces for more coalescing

– There’s no architectural reason we need to scan each object per-snapshot

– Instead, maintain iterators for each snapshot we are still purging and
advance them through the keyspace in step so we can do all snapshots of
a particular object in one go

● Change deleted snapshots representation so it doesn’t inflate ODSMaps

– “deleting_snapshots” instead, which can be trimmed once all OSDs report
they’ve been removed

– Store the full list of deleted snapshots in config-keys or similar, handle it
with ceph-mgr

Future: Available enhancements

73

● BlueStore: It makes everything better

– Stop having to map our semantics onto a filesystem

– Snapshot deletes still require the snapid→object mapping, but the actual
delete is a few key updates rolled into RocksDB – easy to coalesce

● Better throttling for users

– Short-term: hacks to enable sleeps so we don’t overwhelm the local FS

– Long-term: proper cost estimates for BlueStore that we can budget
correctly (not really possible in Fses since they don’t expose number of IOs
needed to flush current dirty state)

Future: Available enhancements

THANK YOU!

Greg Farnum
Principal Engineer, Ceph

gfarnum@redhat.com

@gregsfortytwo

	INTRODUCTION TO CEPH
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	RADOS COMPONENTS
	OBJECT STORAGE DAEMONS
	CRUSH: DYNAMIC DATA PLACEMENT
	DATA IS ORGANIZED INTO POOLS
	LIBRADOS: RADOS ACCESS FOR APPS
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	STORING VIRTUAL DISKS
	RBD STORES VIRTUAL DISKS
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

