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● Principal Software Engineer, Red Hat

● gfarnum@redhat.com

Hi, I’m Greg
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● RADOS, RBD, CephFS: (Lightning) overview and how writes happen

● The (self-managed) snapshots interface

● A diversion into pool snapshots

● Snapshots in RBD, CephFS

● RADOS/OSD Snapshot implementation, pain points

Outline
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Ceph’s Past & Present

● Then: UC Santa Cruz Storage Research 
Systems Center

● Long-term research project in petabyte-
scale storage

● trying to develop a Lustre successor.

● Now: Red Hat, a commercial open-source 
software & support provider you might have 
heard of :)

(Mirantis, SuSE, Canonical, 42on, Hastexo, ...)

● Building a business; customers in virtual block 
devices and object storage

● ...and reaching for filesystem users!
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Ceph Projects

RGW
S3 and Swift compatible 

object storage with object 
versioning, multi-site 

federation, and replication

LIBRADOS
A library allowing apps to direct access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomic, distributed object store comprised of

self-healing, self-managing, intelligent storage nodes (OSDs) and lightweight monitors (Mons)

RBD
A virtual block device with 
snapshots, copy-on-write 

clones, and multi-site 
replication

CEPHFS
A distributed POSIX file 
system with coherent 

caches and snapshots on 
any directory

OBJECT BLOCK FILE



RADOS: Overview
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RADOS Components

7

OSDs:
 10s to 10000s in a cluster
 One per disk (or one per SSD, RAID group…)
 Serve stored objects to clients
 Intelligently peer for replication & recovery

Monitors:
 Maintain cluster membership and state
 Provide consensus for distributed decision-

making
 Small, odd number
 These do not serve stored objects to clients

M
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Object Storage Daemons
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CRUSH: Dynamic Data Placement
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CRUSH:
 Pseudo-random placement algorithm

 Fast calculation, no lookup
 Repeatable, deterministic

 Statistically uniform distribution
 Stable mapping

 Limited data migration on change
 Rule-based configuration

 Infrastructure topology aware
 Adjustable replication
 Weighting
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DATA IS ORGANIZED INTO POOLS
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L

librados: RADOS Access for Apps
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LIBRADOS:
 Direct access to RADOS for applications
 C, C++, Python, PHP, Java, Erlang
 Direct access to storage nodes
 No HTTP overhead

 Rich object API
 Bytes, attributes, key/value data
 Partial overwrite of existing data
 Single-object compound atomic operations
 RADOS classes (stored procedures)
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aio_write(const object_t &oid, AioCompletionImpl *c,

const bufferlist& bl, size_t len, uint64_t off);

c->wait_for_safe();

write(const std::string& oid, bufferlist& bl, size_t len, uint64_t off)

RADOS: The Write Path (user)
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RADOS: The Write Path (Network)

13

Client Primary Replica
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● Queue write for PG

● Lock PG

● Assign order to write op

● Package it for persistent storage

– Find current object state, etc

● Send to replica op

● Send to local persistent storage

● Unlock PG

● Wait for commits from persistent storage and replicas

● Send commit back to client

RADOS: The Write Path (OSD)



RBD: Overview
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STORING VIRTUAL DISKS

16

M M

RADOS CLUSTER

HYPERVISOR
LIBRBD

VM
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RBD STORES VIRTUAL DISKS

17

RADOS BLOCK DEVICE:
 Storage of disk images in RADOS
 Decouples VMs from host
 Images are striped across the cluster (pool)
 Snapshots
 Copy-on-write clones
 Support in:

 Mainline Linux Kernel (2.6.39+)
 Qemu/KVM, native Xen coming soon
 OpenStack, CloudStack, Nebula, Proxmox
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ssize_t Image::write(uint64_t ofs, size_t len, bufferlist& bl)

int Image::aio_write(uint64_t off, size_t len, bufferlist& bl,

       RBD::AioCompletion *c)

RBD: The Write Path



CephFS: Overview
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LINUX HOST

M M

M

RADOS CLUSTER

KERNEL MODULE

datametadata 01
10

Ceph-fuse, samba, 
Ganesha
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extern "C" int ceph_write(struct ceph_mount_info *cmount, int fd, const 
char *buf, int64_t size, int64_t offset)

CephFS: The Write Path (User)
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L

CephFS: The Write Path (Network)
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Client MDS OSD
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● Request write capability from MDS if not already present

● Get “cap” from MDS

● Write new data to “ObjectCacher”

● (Inline or later when flushing)

– Send write to OSD

– Receive commit from OSD

● Return to caller

CephFS: The Write Path



The Origin of Snapshots
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[john@schist backups]$ touch history
[john@schist backups]$ cd .snap
[john@schist .snap]$ mkdir snap1
[john@schist .snap]$ cd ..
[john@schist backups]$ rm -f history
[john@schist backups]$ ls
[john@schist backups]$ ls .snap/snap1
history
# Deleted file still there in the snapshot!
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● For CephFS

– Arbitrary subtrees: lots of seemingly-unrelated objects snapshotting 
together

● Must be cheap to create

● We have external storage for any desired snapshot metadata

Snapshot Design: Goals & Limits
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● Snapshots are per-object

● Driven on object write

– So snaps which logically apply to any object don’t touch it if it’s not written

● Very skinny data

– per-object list of existing snaps

– Global list of deleted snaps

Snapshot Design: Outcome



RADOS: “Self-managed” snapshots
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int set_snap_write_context(snapid_t seq, vector<snapid_t>& snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl 
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid, AioCompletionImpl 
*c);

int selfmanaged_snap_rollback_object(const object_t& oid, 
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface
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“snapids” are allocated by incrementing the “snapid” and “snap_seq” 
members of the per-pool “pg_pool_t” OSDMap struct

Allocating Self-managed Snapshots
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Allocating Self-managed Snapshots

31

Client Monitor

M M

Peons

Disk 
commit
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Allocating Self-managed Snapshots

32

Client Monitor

M M

Peons

Disk 
commit

...or just make them up yourself (CephFS does so in the MDS)
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int set_snap_write_context(snapid_t seq, vector<snapid_t>& 
snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl 
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid, AioCompletionImpl 
*c);

int selfmanaged_snap_rollback_object(const object_t& oid, 
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface
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Writing With Snapshots

34

Client Primary Replica

write(const std::string& oid, bufferlist& bl, size_t len, uint64_t off)
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● Queue write for PG

● Lock PG

● Assign order to write op

● Package it for persistent storage

– Find current object state, etc

– make_writeable()

● Send to replica op

● Send to local persistent storage

● Wait for commits from persistent storage and replicas

● Send commit back to client

Snapshots: The OSD Path
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● The PrimaryLogPG::make_writeable() function

– Is the “SnapContext” newer than the object already has on disk?

– (Create a transaction to) clone the existing object

– Update the stats and clone range overlap information

● PG::append_log() calls update_snap_map()

– Updates the “SnapMapper”, which maintains LevelDB entries from:

● snapid → object
● And Object → snapid

Snapshots: The OSD Path
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struct SnapSet {

  snapid_t seq;

  bool head_exists;

  vector<snapid_t> snaps;    // descending

  vector<snapid_t> clones;   // ascending

  map<snapid_t, interval_set<uint64_t> > clone_overlap;

  map<snapid_t, uint64_t> clone_size;

}

● This is attached to the “HEAD” object in an xattr

Snapshots: OSD Data Structures



RADOS: Pool Snapshots :(
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● Make snapshots “easy” for admins

● Leverage the existing per-object implementation

– Overlay the correct SnapContext automatically on writes

– Spread that SnapContext via the OSDMap

Pool Snaps: Desire
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  int snap_list(vector<uint64_t> *snaps);

  int snap_lookup(const char *name, uint64_t *snapid);

  int snap_get_name(uint64_t snapid, std::string *s);

  int snap_get_stamp(uint64_t snapid, time_t *t);

  int snap_create(const char* snapname);

  int snap_remove(const char* snapname);

  int rollback(const object_t& oid, const char *snapName);

– Note how that’s still per-object!

Librados pool snaps interface
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● “Spread that SnapContext via the OSDMap”

– It’s not a point-in-time snapshot

– SnapContext spread virally as OSDMaps get pushed out

– No guaranteed temporal order between two different RBD volumes in the 
pool – even when attached to the same VM :(

● Inflates the OSDMap size:

per-pool map<snapid_t, pool_snap_info_t> snaps;

struct pool_snap_info_t { snapid_t snapid; utime_t stamp; string name; }

● They are unlikely to solve a problem you want

Pool Snaps: Reality



42

● “Overlay the correct SnapContext automatically on writes”

– No sensible way to merge that with a self-managed SnapContext

– ...so we don’t: pick one or the other for a pool

All in all, pool snapshots are unlikely to usefully solve any problems.

Pool Snaps: Reality



RBD: Snapshot Structures
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RBD Snapshots: Data Structures

struct cls_rbd_snap {

  snapid_t id;

  string name;

  uint64_t image_size;

  uint64_t features;

  uint8_t protection_status;

  cls_rbd_parent parent;

  uint64_t flags;

  utime_t timestamp;

  cls::rbd::SnapshotNamespaceOnDisk snapshot_namespace;

}
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RBD Snapshots: Data Structures

● cls_rbd_snap for every snapshot

● Stored in “omap” (read: LevelDB) key-value space on the RBD volume’s 
header object

● RBD object class exposes get_snapcontext() function, called on mount

● RBD clients “watch” on the header, get “notify” when a new snap is 
created to update themselves



CephFS: Snapshot Structures
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● For CephFS

– Arbitrary subtrees: lots of seemingly-unrelated objects snapshotting 
together

● Must be cheap to create

● We have external storage for any desired snapshot metadata

CephFS Snapshots: Goals & Limits
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CephFS Snapshots: Memory

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq;                     // a version/seq # for changes to _this_ realm.

snapid_t created;                 // when this realm was created.

snapid_t last_created;            // last snap created in _this_ realm.

snapid_t last_destroyed;          // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;  // key is "last" (or 
NOSNAP)
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/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms
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/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms



51

/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms
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/home/home

greggreg sagesage ricric

CephFS Snapshots: SnapRealms
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CephFS Snapshots: SnapRealms

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq;                     // a version/seq # for changes to _this_ realm.

snapid_t created;                 // when this realm was created.

snapid_t last_created;            // last snap created in _this_ realm.

snapid_t last_destroyed;          // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;  // key is "last" (or NOSNAP)

Construct the SnapContext!
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CephFS Snapshots: Memory

● All “CInodes” have “old_inode_t” map representing its past states for 
snapshots

struct old_inode_t {

  snapid_t first;

  inode_t inode;

  std::map<string,bufferptr> xattrs;

}
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CephFS Snapshots: Disk

● SnapRealms are encoded as part of inode

● Snapshotted metadata stored as old_inode_t map in memory/disk

● Snapshotted data stored in RADOS object self-managed snapshots

/<v2>/home<v5>/greg<v9>/foo

foo -> ino 1342, 4 MB, [<1>,<3>,<10>]

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

1342.0/HEAD
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CephFS Snapshots

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0/HEAD

/<v1>/home<v3>/greg<v7>/foo

1342.0/1



CephFS: Snapshot Pain
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CephFS Pain: Opening past parents

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq;                     // a version/seq # for changes to _this_ realm.

snapid_t created;                 // when this realm was created.

snapid_t last_created;            // last snap created in _this_ realm.

snapid_t last_destroyed;          // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;
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CephFS Pain: Opening past parents

● To construct the SnapContext for a write, we need the all the 
SnapRealms it has ever participated in

– Because it could have been logically snapshotted in an old location but not 
written to since, and a new write must reflect that old location’s snapid

● So we must open all the directories the file has been a member of!

– With a single MDS, this isn’t too hard

– With multi-MDS, this can be very difficult in some scenarios

● We may not know who is “authoritative” for a directory under all 
failure and recovery scenarios

● If there’s been a disaster metadata may be inaccessible, but we don’t 
have mechanisms for holding operations and retrying when 
“unrelated” metadata is inaccessible
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CephFS Pain: Opening past parents

● Directory “Cinodes” have “SnapRealms”

● Important elements:

snapid_t seq;                     // a version/seq # for changes to _this_ realm.

snapid_t created;                 // when this realm was created.

snapid_t last_created;            // last snap created in _this_ realm.

snapid_t last_destroyed;          // seq for last removal

snapid_t current_parent_since;

map<snapid_t, SnapInfo> snaps;

map<snapid_t, snaplink_t> past_parents;

Why not store snaps in all descendants
Instead of maintaining ancestor links?



61

CephFS Pain: Eliminating past parents

● The MDS opens an inode for any operation performed on it

– This includes its SnapRealm

● So we can merge snapid lists down whenever we open an inode that has 
a new SnapRealm

● So if we rename a directory/file into a new location; its SnapRealm 
already contains all the right snapids and then we don’t need a link to 
the past!

● I got this almost completely finished

– Reduced code line count

– Much simpler snapshot tracking code

– But….
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CephFS Pain: Hard links

● Hard links and snapshots do not interact :(

● They should!

● That means we need to merge SnapRealms from all the linked parents 
of an inode

– And this is the exact same problem we have with past_parents

– Since we need to open “remote” inodes correctly, avoiding it in the 
common case doesn’t help us

● So, back to debugging and more edge cases



RADOS: Deleting Snapshots
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int set_snap_write_context(snapid_t seq, vector<snapid_t>& snaps);

int selfmanaged_snap_create(uint64_t *snapid);

void aio_selfmanaged_snap_create(uint64_t *snapid, AioCompletionImpl 
*c);

int selfmanaged_snap_remove(uint64_t snapid);

void aio_selfmanaged_snap_remove(uint64_t snapid, 
AioCompletionImpl *c);

int selfmanaged_snap_rollback_object(const object_t& oid, 
::SnapContext& snapc, uint64_t snapid);

Librados snaps interface
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L

“Deleting” Snapshots (Client)

65

Client Monitor

M M

Peons

Disk 
commit
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● Generate new OSDMap updating pg_pool_t

interval_set<snapid_t> removed_snaps;

● This is really space-efficient if you consistently delete your oldest 
snapshots!

– Rather less so if you keep every other one forever

● ...and this looks sort of like some sensible RBD snapshot strategies 
(daily for a week, weekly for a month, monthly for a year)

Deleting Snapshots (Monitor)
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● OSD advances its OSDMap

● Asynchronously:

– List objects with that snapshot via “SnapMapper”

● int get_next_objects_to_trim( snapid_t snap, unsigned max, vector<hobject_t> 
*out);

– For each object:

● “unlink” object clone for that snapshot – 1 coalescable IO

– Sometimes clones belong to multiple snaps so we might not delete right away
● Update object HEAD’s “SnapSet” xattr – 1+ unique IO
● Remove SnapMapper’s LevelDB entries for that object/snap pair – 1 coalescable IO
● Write down “PGLog” entry recording clone removal – 1 coalescable IO

– Note that if you trim a bunch of snaps, you do this for each one – no coalescing it down 
to one pass on each object :(

Deleting Snapshots (OSD)
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● So that’s at least 1 IO per object in a snap

– potentially a lot more if we needed to fetch KV data off disk, didn’t have 
directories cached, etc

– This will be a lot better in BlueStore! It’s just coalescable metadata ops

● Ouch!

● Even worse: throttling is hard

– Why is a whole talk on its own

– It’s very difficult to not overwhelm clusters if you do a lot of trimming at 
once

Deleting Snapshots (OSD)



RADOS: Alternate Approaches
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● Maintain a per snapid directory with hard links!

– Every clone is linked into (all) its snapid directory(s)

– Just list the directory to identify them, then

● update the object’s SnapSet
● Unlink from all relevant directories

● Turns out this destroys locality, in addition to being icky code

Past: Deleting Snapshots
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● For instance, LVM snapshots?

● We don’t want to snapshot everything on an OSD at once

– No implicit “consistency groups” across RBD volumes, for instance

● So we ultimately need a snap→object mapping, since each snap touches 
so few objects

Present: Why per-object?
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● Update internal interfaces for more coalescing

– There’s no architectural reason we need to scan each object per-snapshot

– Instead, maintain iterators for each snapshot we are still purging and 
advance them through the keyspace in step so we can do all snapshots of 
a particular object in one go

● Change deleted snapshots representation so it doesn’t inflate ODSMaps

– “deleting_snapshots” instead, which can be trimmed once all OSDs report 
they’ve been removed

– Store the full list of deleted snapshots in config-keys or similar, handle it 
with ceph-mgr

Future: Available enhancements
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● BlueStore: It makes everything better

– Stop having to map our semantics onto a filesystem

– Snapshot deletes still require the snapid→object mapping, but the actual 
delete is a few key updates rolled into RocksDB – easy to coalesce

● Better throttling for users

– Short-term: hacks to enable sleeps so we don’t overwhelm the local FS

– Long-term: proper cost estimates for BlueStore that we can budget 
correctly (not really possible in Fses since they don’t expose number of IOs 
needed to flush current dirty state)

Future: Available enhancements



THANK YOU!

Greg Farnum
Principal Engineer, Ceph

gfarnum@redhat.com

@gregsfortytwo
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