
Performance Monitoring

for the Cloud
Werner Keil

Director, Creative Arts & Technologies
@wernerkeil | @UnitAPI | wkeil@apache.org

Agenda

ÅIntroduction

ÅPerformance Co-Pilot

ÅDropwizard Metrics

ÅApache Sirona

ÅStatsD

ÅDemo

ÅConclusion

© 2016 Creative Arts & Technologies 2

Who am I?

© 2016 Creative Arts & Technologies 3

ÅConsultant ïCoach

ÅCreative Cosmopolitan

ÅOpen Source Evangelist

ÅSoftware Architect

ÅApache Committer

ÅJCP EC Member

ÅJSR 363 Co Spec Lead

ÅJava EE Guardian | DevOps Guy é

Twitter @wernerkeil | Email wkeil@apache.org

What is Monitoring?

© 2016 Creative Arts & Technologies 4

Monitoring applications is observing, analyzing and manipulating
the execution of these applications, which gives information
about threads, CPU usage, memory usage, as well as other
information like methods and classes being used.

A particular case is the monitoring of distributed applications,
aka the Cloud where an the performance analysis of nodes and
communication between them pose additional challenges.

A high-level view of Cloud Monitoring

© 2016 Creative Arts & Technologies 5

Challenges at System Level

ÅEfficient Scalability
ÅSupporting tens of thousands of monitoring tasks

ÅCost effective: minimize resource usage

ÅMonitoring QoS
ÅMulti-tenancy environment

ÅMinimize resource contention between monitoring tasks

ÅImplication of Multi-Tenancy
ÅMonitoring tasks: adding, removing

ÅResource contention between monitoring tasks

© 2016 Creative Arts & Technologies 6

Performance vs Number of Hosts

Number of hosts Performance (values per second)

100 100

1000 1000

10000 10000

60 items per host, update frequency once per minute

Number of hosts Performance (values per second)

100 1000

1000 10000

10000 100000

600items per host, update frequency once per minute

Monitoring Tips

ÅRegularly apply ñLittleôs Lawò to all data... generic
(queueing theory) form:

Q = ɚR

ÅLength = Arrival Rate x Response Time
Åe.g. 10 MB = 2 MB/sec x 5 sec

ÅUtilization = Arrival Rate x Service Time
Åe.g. 20% = 0.2 = 100 msec/sec x 2 sec

© 2016 Creative Arts & Technologies 8

Types of Monitoring

Monitoring Logs

ÅLogstash

ÅRedis

ÅElasticsearch

ÅKibana Dashboard

© 2016 Creative Arts & Technologies 9

Monitoring Performance

ÅCollectd

ÅStatsd

ÅPCP

ÅGraphite

ÅDatabase (eg: PSQL)

ÅGrafana Dashboard

Monitoring Logs ςKibanaDashboard

© 2016 Creative Arts & Technologies 10

Monitoring Performance

© 2016 Creative Arts & Technologies 11

How is this traditionally done?

Årsyslog/syslog-ng/journald

Åtop/iostat/vmstat/ps

ÅMixture of scripting languages (bash/perl/python)

ÅSpecific tools vary per platform

ÅProper analysis requires more context

Performance Co-Pilot

© 2016 Creative Arts & Technologies 12

PCP

http://www.pcp.io

GitHub

https://github.com/
performancecopilot

http://www.pcp.io/
http://www.pcp.io/

What is PCP?

ÅOpen source toolkit

ÅSystem-level analysis

ÅLive and historical

ÅExtensible (monitors, collectors)

ÅDistributed

ÅUnix-like component design

ÅCross platform

ÅUbiquitous units of measurement

© 2016 Creative Arts & Technologies 13

PCP Basics

Agents and Daemons

At the core we have two basic
components:

1. Performance Metric
Domain Agents
ÅAgents

2. Performance Metric
Collection Daemon
ÅPMCD

© 2016 Creative Arts & Technologies 14

PCP Architecture

© 2016 Creative Arts & Technologies 15

PCP Metrics

Åpminfo --desc -tT --fetch disk.dev.read

disk.dev.read [per-disk read operations]

Data Type: 32-bit unsigned int InDom: 60.1

Semantics: counter Units: count

Help: Cumulative count of disk reads since boot time

Values:

inst [0 or "sda"] value 3382299

inst [1 or "sdb"] value 178421

© 2016 Creative Arts & Technologies 16

PCP Agents

© 2016 Creative Arts & Technologies 17

Webserver

(apache/nginx)

DBMS

Network

Kernel

PMCD

PCP Clients

© 2016 Creative Arts & Technologies 18

Agents
PMCD

pmie

pmstat

pmval

pminfo

pmchart

PCP Remote Clients

© 2016 Creative Arts & Technologies 19

Agents
PMCD

Clients

Remote
PMCD

PCP Data Model

ÅMetrics come from one source (host / archive)

ÅSource can be queried at any interval by any monitor tool

ÅHierarchical metric names
e.g. disk.dev.read and aconex.response_time.avg

ÅMetrics are singular or set-valued (ñinstance domainò)

ÅMetadata associated with every metric
ÅData type (int32, uint64, double, ...)

ÅData semantics (units, scale, ...)

ÅInstance domain

© 2016 Creative Arts & Technologies 20

Performance Timeline

ÅWhere does the time go?

ÅWhereôs it going now?

ÅWhere will it go?

© 2016 Creative Arts & Technologies 21

Performance Timeline ïPCP Toolkit

ÅArchives

ÅLive Monitoring

ÅModelling and statistical
prediction

© 2016 Creative Arts & Technologies 22

Performance Timeline ïPCP Toolkit

ÅYesterday, last week, last month, ...

ÅAll starts with pmlogger
ÅArbitrary metrics, intervals

ÅOne instance produces one PCP archive for one host

ÅAn archive consists of 3 files
ÅMetadata, temporal index, data volume(s)

Åpmlogger_daily, pmlogger_check
ÅEnsure the data keeps flowing

Åpmlogsummary, pmwtf, pmdumptext

Åpmlogextract, pmlogreduce

© 2016 Creative Arts & Technologies 23

Custom Instrumentation (Applications)

© 2016 Creative Arts & Technologies 24

PCP ïParfait

Parfait has 4 main parts (for now)

ÅMonitoring

ÅDXM

ÅTiming

ÅRequests

© 2016 Creative Arts & Technologies 25

Parfait ïMonitoring

ÅThis is the óoriginalô PCP bridge metrics (heavily modified)

ÅSimple Java objects (MonitoredValues) which wrap a value
(e.g. AtomicLong, String)

ÅMonitoredValues register themselves with a registry (container)

ÅWhen values changes, observers notice and output accordingly
ÅPCP

ÅJMX

ÅOther (Custom/Extended)

ÅVery simple to use

ÅóDefault registryô (legacy concept)

© 2016 Creative Arts & Technologies 26

Parfait ïDXM

ÅThis is the PCP output side of aconex-pcp-bridge

ÅRewritten to use the new non-custom MMV PMDA

ÅAdvantages:
ÅFlexible, standardized, less maintenance work

ÅDisadvantages
ÅHave to assign ID to each metric

ÅMap metrics names to ópseudo-PCPô names, e.g.:
Åaconex.controllers.time.blah Ÿ

aconex.controllers[mel/blah].time

ÅPlacement of brackets is significant (determines PCP domains)

© 2016 Creative Arts & Technologies 27

Parfait ïTiming

ÅLogs the resources consumed by a request (an individual user
action)

ÅRelies on a single request being thread-bound (and threads
being used exclusively)

ÅBasically needs a Map<Thread, Value>

ÅTake the value for a Thread at the start, and at the end

ÅDelta is the ócostô of that request

© 2016 Creative Arts & Technologies 28

Parfait ïTiming Example

[2010- 09- 22 15:02:13,466 INFO][ait.timing.Log 4jSink][http - 8080- Processor 3
gedq93kl][192.168.7.132][20][] Top taskssummaryfeatures:tasks

taskssummaryfeatures:tasks Elapsed time: own 380.146316 ms, total
380.14688 ms Total CPU: own 150.0 ms, total 150.0 ms User CPU: own 140.0 ms,
total 140.0 ms System CPU: own 10.0 ms, total 10.0 ms Blocked count: own
40, total 40 Blocked time: own 22 ms, total 22 ms Wait count: own 2, total
2 Wait time: own 8 ms, total 8 ms Database execution time: own 57 ms,
total 57 ms Database execution count: own 11, total 11 Database logical
read count: own 0, total 0 Database physical read count: own 0, total 0

Database CPU time: own 0 ms, total 0 ms Database received bytes: own
26188 By, total 26188 By Database sent bytes: own 24868 By, total 24868 By

Error Pages: own 0, total 0 Bobo execution time: own 40.742124 ms, total
40.742124 ms Bobo execution count: own 2, total 2 Bytes transferred via
bobo search: own 0 By, total 0 By Super search entity count: own 0, total 0

Super search count: own 0, total 0 Bytes transferred via super search: own
0 By, total 0 By Elapsed time during super search: own 0 ms, total 0 ms

© 2016 Creative Arts & Technologies 29

Parfait ïRequests

ÅAs well as snapshotting requests after completion, for many
metrics we can see meaningful óin-progressô values

ÅSimple JMX bean which ówalksô in-progress requests

ÅTie in with ThreadContext (MDC abstraction)

ÅInclude UserID

ÅThreadID

© 2016 Creative Arts & Technologies 30

PCP ïSpeed

Golang implementation of the PCP
instrumentation API

There are 3 main components
in the library

ÅClient

ÅRegistry

ÅMetric

© 2016 Creative Arts & Technologies 31

PCP ïSpeed Metric

© 2016 Creative Arts & Technologies 32

ÅSingletonMetric
ÅThis type defines a metric with no instance domain and only one value. It

requires type, semantics and unit for construction, and optionally takes a
couple of description strings. A simple construction

metric, err := speed. NewPCPSingletonMetric (

42, // initial value

"simple.counter" , // name

speed.Int32Type, // type

speed.CounterSemantics, // semantics

speed.OneUnit, // unit

"A Simple Metric" , // short description

"This is a simple counter metric to demonstrate the speed API" , // long descr

)

Image © HitchhikersHandbook.com

PCP for
Containers

PCP for Containers ïCgroup Accounting

Å[subsys].stat files below /sys/fs/cgroup

Åindividual cgroup or summed over children

Åblkio

ÅIOPs/bytes, service/wait time ïaggregate/per-dev

ÅSplit up by read/write, sync/async

Åcpuacct

ÅProcessor use per-cgroup - aggregate/per-CPU

Åmemory

Åmapped anon pages, page cache, writeback, swap, active/inactive
LRU state

© 2016 Creative Arts & Technologies 34

PCP for Containers ïNamespaces

ÅExample: cat /proc/net/dev

ÅContents differ inside vs outside a container

ÅProcesses (e.g. cat) in containers run in different network, ipc,
process, uts, mount namespaces

ÅNamespaces are inherited across fork/clone

ÅProcesses within a container share common view

© 2016 Creative Arts & Technologies 35

PCP Container Analysis ïGoals

ÅAllow targeting of individual containers

Åe.g. /proc/net/dev

Åpminfo --fetch network

Åvs

Åpminfo ïfetch ïcontainer=crank network

ÅZero installation inside containers required

ÅSimplify your life (dev_t auto-mapping)

ÅData reduction (proc.*, cgroup.*)

© 2016 Creative Arts & Technologies 36

PCP Container Analysis ïMechanisms

Åpminfo -f ïhost=acme.comïcontainer=crank network

ÅWire protocol extension

ÅInform interested PCP collector agents

ÅResolving container names, mapping names to cgroups, PIDs, etc.

Åsetns(2)

ÅRuns on the board, plenty of work remains

ÅNew monitor tools with container awareness

© 2016 Creative Arts & Technologies 37

What is Metrics?

ÅCode instrumentation

ÅMeters

ÅGauges

ÅCounters

ÅHistograms

ÅWeb app instrumentation

ÅWeb app health check

© 2016 Creative Arts & Technologies 38

Metrics Reporters

ÅReporters
ÅConsole

ÅCSV

ÅSlf4j

ÅJMX

ÅAdvanced reporters
ÅGraphite

ÅGanglia

© 2016 Creative Arts & Technologies 39

Metrics 3rd Party Libraries

ÅAspectJ

ÅInfluxDB

ÅStatsD

ÅCassandra

ÅSpring

© 2016 Creative Arts & Technologies 40

Metrics Basics

© 2016 Creative Arts & Technologies 41

ÅMetricsRegistry
ÅA collection of all the metrics for your application

ÅUsually one instance per JVM

ÅUse more in multi WAR deployment

ÅNames
ÅEach metric has a unique name

ÅRegistry has helper methods for creating names

MetricRegistry . name(Queue. class , "items" , "total")

//com.example.queue.items.total

MetricRegistry . name(Queue. class , "size" , "byte")

//com.example.queue.size.byte

Metrics Elements

© 2016 Creative Arts & Technologies 42

ÅGauges
ÅThe simplest metric type: it just returns a value

final Map<String, String> keys = new HashMap<>();

registry.register(MetricRegistry.name("gauge", "keys"),
new Gauge<Integer>() {

@Override

public Integer getValue() {

return keys.keySet().size();

}

});

Metrics Elements (2)

© 2016 Creative Arts & Technologies 43

ÅCounters
ÅIncrementing and decrementing 64.bit integer

final Counter counter= registry.counter(MetricRegistry.name("counter",

"inserted"));

counter.inc();

Metrics Elements (3)

© 2016 Creative Arts & Technologies 44

ÅHistograms
ÅMeasures the distribution of values in a stream of data

final Histogram resultCounts = registry.histogram(name(ProductDAO.class,

"result - counts");

resultCounts.update(results.size());

ÅMeters
ÅMeasures the rate at which a set of events occur

final Meter meter = registry.meter(MetricRegistry.name("meter", "inserted"));

meter.mark();

Metrics Elements (4)

© 2016 Creative Arts & Technologies 45

ÅTimers
ÅA histogram of the duration of a type of event and a meter of the rate of its

occurrence

Timer timer = registry.timer(MetricRegistry.name("timer", "inserted"));

Context context = timer.time();

//timed ops

context.stop();

Metrics ïGraphite Reporter

© 2016 Creative Arts & Technologies 46

final Graphite graphite = new Graphite(new
InetSocketAddress("graphite.example.com", 2003));

final GraphiteReporter reporter = GraphiteReporter.forRegistry(registry)

.prefixedWith("web1.example.com")

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.MILLISECONDS)

.filter(MetricFilter.ALL)

.build(graphite);

reporter.start(1, TimeUnit.MINUTES);

Metrics can be prefixed

Useful to divide environment metrics: prod, test

MetricsïGrafana Application Overview

© 2016 Creative Arts & Technologies 47

