
Cassandra on Armv8 - A comparison with x86
and other platforms

Sankalp Sah, Manish Singh

MityLytics Inc

Why ARM for Cassandra ?
● RISC architecture as opposed to x86

● Lower Cost

● Thermals

● Power and it’s management

● Cost per operation

● High number of CPUs on each board

● Memory throughput

● Lots of simple instructions executed in parallel

Caveats

1. Bleeding edge

2. Performance not yet tuned

3. Efforts on to tune for ARM via

AdoptJDK and Linaro distributions

ARMv8 - Specifications of platform
Each machine :

1. 96-core Cavium ThunderX @2GHz

2. 128GB RAM

3. 1 x 340GB Enterprise SSD

4. 2 x 10Gbps Bonded Ports

Evaluation - The operator view
● Cost - $0.50/hour at Packet.net 96 core

ThunderX from cavium at 2.0GHz

● Thermals

● Power consumption

● Dollar cost per-operation

● Utilization - Workload fit

Evaluation of Performance - micro perspective

● Write operations

● Read-write mix

● Max achievable

● Latency

● Co-tenanted applications - should not

evaluate in isolation.

1 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 192,449
b. Sustained Throughput - 129,170

2. Latency
a. Latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 2.6 [WRITE:2.6]
d. latency 99th percentile : 7.3 [WRITE:7.3]
e. latency 99.9th percentile : 170.9 [WRITE:170.9]
f. latency max : 321.6 [WRITE:321.6]

10 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 220,000
b. Sustained Throughput - 137,689

2. Latency
a. latency mean : 1.4 [WRITE:1.4]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.3 [WRITE:1.3]
d. latency 99th percentile : 4.3 [WRITE:4.3]
e. latency 99.9th percentile : 45.4 [WRITE:45.4]
f. latency max : 397.0 [WRITE:397.0]

20 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 193,220
b. Sustained Throughput - 124,784

2. Latency
a. latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.4 [WRITE:1.4]
d. latency 99th percentile : 4.3 [WRITE:4.3]
e. latency 99.9th percentile : 41.1 [WRITE:41.1]
f. latency max : 567.4 [WRITE:567.4]

50 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 206k
b. Sustained Throughput - 129,000

2. Latency
a. latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.3 [WRITE:1.3]
d. latency 99th percentile : 2.1 [WRITE:2.1]
e. latency 99.9th percentile : 72.3 [WRITE:72.3]
f. latency max : 584.0 [WRITE:584.0]

1 million Read-Write mixed workloads -75%read 25%
writes

1. Throughput
a. Max operations per sec - 124k
b. Sustained Throughput - 123k

2. Latency
a. latency mean : 2.1 [READ:2.5, WRITE:1.2]
b. latency median : 0.7 [READ:0.7, WRITE:0.7]
c. latency 95th percentile : 6.2 [READ:6.4, WRITE:2.2]
d. latency 99th percentile : 7.6 [READ:8.1, WRITE:2.7]
e. latency 99.9th percentile : 51.5 [READ:54.7, WRITE:25.3]
f. latency max : 124.0 [READ:124.0, WRITE:113.0]

10 million Read-Write mixed workloads -75%read 25%
writes

1. Throughput
a. Peak 150,842
b. Sustained 122,000

2. Latency
a. latency mean : 4.9 [READ:5.1, WRITE:4.1]
b. latency median : 2.2 [READ:2.3, WRITE:1.7]
c. latency 95th percentile : 6.2 [READ:6.7, WRITE:5.4]
d. latency 99th percentile : 25.2 [READ:88.8, WRITE:85.3]
e. latency 99.9th percentile : 125.9 [READ:128.7, WRITE:127.2]
f. latency max : 256.2 [READ:256.2, WRITE:247.4]

20 million Read-Write mixed workloads -75%read 25%
writes

1. Throughput
a. Peak 147k
b. Sustained 138k

2. Latency
a. latency mean : 6.6 [READ:6.8, WRITE:5.8]
b. latency median : 3.1 [READ:3.3, WRITE:2.7]
c. latency 95th percentile : 9.6 [READ:10.5, WRITE:8.5]
d. latency 99th percentile : 97.7 [READ:104.3, WRITE:99.6]
e. latency 99.9th percentile : 138.6 [READ:142.0, WRITE:140.5]
f. latency max : 429.4 [READ:429.4, WRITE:421.9]

50 million Read-Write mixed workloads -75% Read 25%
Writes

1. Throughput
a. Peak 155k
b. Sustained 135k

2. Latency
a. latency mean : 6.7 [READ:6.9, WRITE:6.0]
b. latency median : 3.2 [READ:3.4, WRITE:2.7]
c. latency 95th percentile : 8.6 [READ:9.5, WRITE:8.0]
d. latency 99th percentile : 101.3 [READ:117.9, WRITE:107.8]
e. latency 99.9th percentile : 140.0 [READ:142.4, WRITE:141.6]
f. latency max : 229.2 [READ:229.2, WRITE:186.4]

Perf counters for ARM - while running cassandra stress
Overall CPU at 44%, Memory usage at 60GB

711069.602520 task-clock (msec) # 96.046 CPUs utilized
 14,802 context-switches # 0.004 K/sec
 137 cpu-migrations # 0.000 K/sec
 7,207 page-faults # 0.002 K/sec
 7,422,259,052,720 cycles # 2.000 GHz
 3,929,716,281 stalled-cycles-frontend # 0.05% frontend cycles idle
 7,384,719,523,004 stalled-cycles-backend # 99.49% backend cycles idle
 43,938,297,479 instructions # 0.01 insns per cycle
 # 168.07 stalled cycles per insn
 6,114,998,824 branches # 1.648 M/sec
 375,388,710 branch-misses # 6.14% of all branches

1. 285.560310 task-clock (msec) # 1.239 CPUs utilized
2. 359 context-switches # 0.001 M/sec
3. 231 cpu-migrations # 0.809 K/sec
4. 2,855 page-faults # 0.010 M/sec
5. 565,162,728 cycles # 1.979 GHz
6. 114,307,459 stalled-cycles-frontend # 20.23% frontend cycles idle
7. 280,646,883 stalled-cycles-backend # 49.66% backend cycles idle
8. 205,551,207 instructions # 0.36 insns per cycle
9. # 1.37 stalled cycles per insn

10. 28,882,484 branches # 101.143 M/sec
11. 4,453,137 branch-misses # 15.42% of all branches

Performance counter stats for the JVM

Packet.net Type-1 node
● Intel E3-1240 v3 - 4 physical Cores @ 3.4 GHz

● 32GB

● 2 x 120GB Enterprise SSD

● 2 x 1Gbps Bonded Ports

● $0.40/hr - on demand pricing

1 million writes
Throughput - 3 node
Peak : 174877
Sustained : 154738
Latency:
latency mean : 1.3 [WRITE:1.3]
latency median : 0.7 [WRITE:0.7]
latency 95th percentile : 2.7 [WRITE:2.7]
latency 99th percentile : 5.0 [WRITE:5.0]
latency 99.9th percentile : 44.7 [WRITE:44.7]
latency max : 82.5 [WRITE:82.5]

1 million Read-Write mixed workloads -75%read 25%
writes

1. Throughput
a. Max operations per sec - 117k
b. Sustained Throughput - 117k

2. Latency

a. latency mean : 1.5 [READ:1.6, WRITE:1.3]
b. latency median : 1.5 [READ:0.7, WRITE:0.6]
c. latency 95th percentile : 4.2[READ:4.5, WRITE:3.6]
d. latency 99th percentile : 9.9 [READ:10.6, WRITE:9.6]
e. latency 99.9th percentile : 86.5 [READ:86.7, WRITE:51.6]
f. latency max : 88 ms [READ:88.0, WRITE:86.2]

10 million Read-Write mixed workloads -75%read 25%
writes

1. Throughput
a. Max operations per sec - 86k
b. Sustained Throughput - 80k

2. Latency

a. latency mean : 5.0 [READ:5.1, WRITE:4.9]

b. latency median : 1.8 [READ:1.8, WRITE:1.7]

c. latency 95th percentile : 15.5 [READ:16.4, WRITE:14.8]

d. latency 99th percentile : 43.0 [READ:49.2, WRITE:43.5

e. latency 99.9th percentile : 87.4 [READ:97.4, WRITE:86.1]

f. latency max : 377.3 [READ:377.3, WRITE:299.7]

Performance counters - while running Cassandra-stress -
Type 1

 243304.786828 task-clock (msec) # 7.994 CPUs utilized
 4,770,619 context-switches # 0.020 M/sec
 533,669 cpu-migrations # 0.002 M/sec
 32,955 page-faults # 0.135 K/sec
 823,721,139,097 cycles # 3.386 GHz
 793,542,050,783 instructions # 0.96 insns per cycle
 139,500,426,441 branches # 573.357 M/sec
 1,239,316,562 branch-misses # 0.89% of all branches

Idle perf counters - Type 1 cluster on Packet

 75615.159586 task-clock (msec) # 7.995 CPUs utilized
 1,504 context-switches # 0.020 K/sec
 23 cpu-migrations # 0.000 K/sec
 2 page-faults # 0.000 K/sec
 102,605,745 cycles # 0.001 GHz

 17,332,602 instructions # 0.17 insns per cycle
 3,499,854 branches # 0.046 M/sec
 412,360 branch-misses # 11.78% of all branches

Characterisation for Type-1
1. Peak CPU hit 81%

2. Peak Memory hit ~100

3. Performance starts to degrade after 1 million

read-writes.

Amazon i3.4xlarge - 1million writes - 3 nodes
Throughput:
Peak 135,700
Sustained 114,906 op/s [WRITE: 114,906 op/s]

Latency:
Latency mean : 1.7 ms [WRITE: 1.7 ms]
Latency median : 1.1 ms [WRITE: 1.1 ms]
Latency 95th percentile : 4.0 ms [WRITE: 4.0 ms]
Latency 99th percentile : 10.5 ms [WRITE: 10.5 ms]
Latency 99.9th percentile : 90.8 ms [WRITE: 90.8 ms]
Latency max : 218.8 ms [WRITE: 218.8 ms]

Amazon i3.4xlarge - 10 million writes - 3 nodes
Throughput : 126,064 op/s [WRITE: 126,064 op/s]

Latency mean : 1.6 ms [WRITE: 1.6 ms]
Latency median : 1.0 ms [WRITE: 1.0 ms]
Latency 95th percentile : 3.8 ms [WRITE: 3.8 ms]
Latency 99th percentile : 8.5 ms [WRITE: 8.5 ms]
Latency 99.9th percentile : 99.4 ms [WRITE: 99.4 ms]
Latency max : 268.7 ms [WRITE: 268.7 ms]

AWS i3 4xlarge - 20 million writes - 3 nodes

Throughput : 123,022 op/s [WRITE: 123,022 op/s]
Latency mean : 1.6 ms [WRITE: 1.6 ms]
Latency median : 1.0 ms [WRITE: 1.0 ms]
Latency 95th percentile : 3.8 ms [WRITE: 3.8 ms]
Latency 99th percentile : 8.4 ms [WRITE: 8.4 ms]
Latency 99.9th percentile : 82.9 ms [WRITE: 82.9 ms]
Latency max : 195.3 ms [WRITE: 195.3 ms]

AWS i3 4xlarge - 50 million writes - 3 node

Throughput : 121,055 op/s [WRITE: 121,055 op/s]

Latency mean : 1.6 ms [WRITE: 1.6 ms]
Latency median : 1.0 ms [WRITE: 1.0 ms]
Latency 95th percentile : 3.8 ms [WRITE: 3.8 ms]
Latency 99th percentile : 8.8 ms [WRITE: 8.8 ms]
Latency 99.9th percentile : 80.8 ms [WRITE: 82.9 ms]
Latency max : 156 [WRITE: 156.3 ms]

AWS i3 4xl perf counters
JVM

 1309.462273 task-clock (msec) # 16.294 CPUs utilized

 1,296 context-switches # 0.990 K/sec

 87 cpu-migrations # 0.066 K/sec

 3,304 page-faults # 0.003 M/sec

AWS i3.4xlarge - 3 node - with external client
Peak throughput - 310k ops/sec
Op rate : 272,544 op/s [WRITE: 272,544 op/s]
Partition rate : 272,544 pk/s [WRITE: 272,544 pk/s]
Row rate : 272,544 row/s [WRITE: 272,544 row/s]
Latency mean : 3.3 ms [WRITE: 3.3 ms]
Latency median : 1.9 ms [WRITE: 1.9 ms]
Latency 95th percentile : 5.7 ms [WRITE: 5.7 ms]
Latency 99th percentile : 71.2 ms [WRITE: 71.2 ms]
Latency 99.9th percentile : 92.5 ms [WRITE: 92.5 ms]
Latency max : 254.9 ms [WRITE: 254.9 ms]

AWS i3.4xlarge - single node - write workload

Peak Throughput : 133k ops/sec - 20 million operations.
Sustained throughput : 114k ops/sec

Latency mean : 1.7 ms
Latency median : 1.2 ms
Latency 95th percentile : 3.2 ms
Latency 99th percentile : 6.6 ms
Latency 99.9th percentile : 94.0 ms
Latency max : 584.1 ms

AWS i3.4xlarge - single node - mixed read 75%-write 25%

Peak Throughput : 112.5k ops/sec - 100 million operations.
Sustained throughput : 102k ops/sec

Latency mean : 8.9 ms [READ: 8.9 WRITE: 8.9ms]
Latency median : 6.4 ms [READ: 6.4 WRITE: 6.4 ms]
Latency 95th percentile : 19.3 ms [READ: 19.4 WRITE: 19.6 ms]
Latency 99th percentile : 65.4 ms [READ: 65.4 WRITE: 65.5 ms]
Latency 99.9th percentile : 103.5 ms [READ: 103.4 WRITE: 103.9 ms]
Latency max : 276.0 ms [READ: 276.0 WRITE: 271.3 ms]

GPU - g2.8xlarge node - 1 million writes
Throughput :

Peak throughput : 118,973 ops/sec
Sustained : 102,840 ops/sec

Latency:
Latency mean : 1.8 ms [WRITE: 1.8 ms]
Latency median : 1.4 ms [WRITE: 1.4 ms]
Latency 95th percentile : 2.7 ms [WRITE: 2.7 ms]
Latency 99th percentile : 4.7 ms [WRITE: 4.7 ms]
Latency 99.9th percentile : 125.3 ms [WRITE: 125.3 ms]
Latency max : 204.7 ms [WRITE: 204.7 ms]

GPU - g2.8xlarge node - 10 million writes
Throughput :

Peak throughput : 131,658 ops/sec
Sustained : 109,202 ops/sec

Latency:
Latency mean : 1.8 ms [WRITE: 1.8 ms]
Latency median : 1.5 ms [WRITE: 1.5 ms]
Latency 95th percentile : 2.6 ms [WRITE: 2.6 ms]
Latency 99th percentile : 3.7 ms [WRITE: 3.7 ms]
Latency 99.9th percentile : 118.0 ms [WRITE: 118.0 ms]
Latency max : 551.0 ms [WRITE: 551.0 ms]

GPU - g2.8xlarge node - 20 million writes
Throughput :

Peak throughput : 120,640 ops/sec
Sustained : 99,776 ops/sec

Latency:
Latency mean : 2.0 ms [WRITE: 1.8 ms]
Latency median : 1.5 ms [WRITE: 1.5 ms]
Latency 95th percentile : 2.8 ms [WRITE: 2.6 ms]
Latency 99th percentile : 3.9 ms [WRITE: 3.7 ms]
Latency 99.9th percentile : 109.6 ms [WRITE: 118.0 ms]
Latency max : 1201.7 ms [WRITE: 551.0 ms]

GPU - g2.8xlarge node - 75% Read- 25%write mixed workload
Throughput :

Peak throughput : 117, 759 ops/sec - For 10 million operations
Sustained : 107, 049 ops/sec

Latency:
Latency mean : 8.5 ms [READ 8.8 ms, WRITE: 7.6 ms]
Latency median : 6.6 ms [READ 6.8, WRITE: 5.8 ms]
Latency 95th percentile : 15.5 ms [READ 15.5 ms WRITE: 14.4 ms]
Latency 99th percentile : 66.5 ms [READ 67.0 ms WRITE: 64.1 ms]
Latency 99.9th percentile : 91.3 ms [READ 91.8 WRITE: 90.0 ms]
Latency max : 213.1 ms [READ 213.1 WRITE: 134.3 ms]

ARMv8 - Type 2a node from Packet - 10 million writes
Throughput :

Peak throughput : 140,247ops/sec
Sustained : 91,675 ops/sec

Latency:
Latency mean : 2.1 ms [WRITE: 2.1 ms]
Latency median : 1.3 ms [WRITE: 1.3 ms]
Latency 95th percentile : 3.5 ms [WRITE: 3.5 ms]
Latency 99th percentile : 8.1 ms [WRITE: 8.1 ms]
Latency 99.9th percentile : 83.8 ms [WRITE: 83.8 ms]
Latency max : 470.3 ms [WRITE: 470.3 ms]

ARMv8 - Type 2a node from Packet - 75% Read- 25%write
mixed workload
Throughput :
Peak : 59,110 ops/sec - For 10 million operations
Sustained : 54,909 ops/sec

Latency:
Latency mean : 2.2ms [READ: 2.5 ms WRITE: 1.0 ms]
Latency median : 1.7 ms[READ: 1.8 ms WRITE: 0.7 ms]
Latency 95th percentile : 2.4 ms [READ: 2.5 ms WRITE: 1.0 ms]
Latency 99th percentile : 66.5 ms [READ 3.5 ms WRITE: 1.2 ms]
Latency 99.9th percentile : 91.3 ms [READ: 128.2 WRITE: 22.9 ms]
Latency max : 301.0 ms [READ 301.0 ms WRITE: 286.1 ms]

Some key considerations
● How many bytes can you push through the network.

● How much memory throughput can you get?

● How many instructions can you execute? Several different

measures

● How much storage bandwidth can you get?

Characterisation for ARMv8
1. Scales well as writes go up to 50 million on a 3-node cluster with peak CPU and

memory at 40-50% even with large number of client threads on the machines.

2. Performs favorably when compared to other bare-metal co-tenanted clusters for eg

packet type-1 nodes - where peak write performance for 3-node cluster was 117k write

operations/sec and memory usage was 90% while peak CPU usage was 88%.

3. Performs favorably to VM environments such as the recommended Amazon i3 nodes

where peak performance is 126k write operations/sec for a 3-node multi-tenanted

system.

Cassandra
● Massive number of deployments

● JVM performance

● What is optimizable in Cassandra for ARM based server

● What kind of servers should be used

● What settings?

● Cassandra is CPU bound before being memory bound

● Local storage vs Block storage

● I/O

● Kernel settings

● Network settings

● Configuration

Performance affected by several additional factors
1. Workload mix

2. Co-located clusters

3. Network design

Applications running in your ecosystem
● What other apps or frameworks or clusters are running?

● How you can carve up infrastructure resources?

● How to observe where you have spare capacity?

● Scheduling appropriately

● Maintaining performance

An example - where Cassandra was running in a
containerized environment
1. CoreOS

2. Converged infrastructure

3. Mesos

4. Docker

5. Single flat 10Gig network

6. Co-tenant applications other than Cassandra present on machine - fairly common

given that a lot of deployments use Spark co-located with Cassandra.

Performance numbers for Containerized environment
At a customer site ten node cluster gave a sustained throughput of 550,000 ops/sec in a

mixed 80/20 read/write workload where each node has 40 cores

Finding:

Cassandra, when co-tenancy of multiple high network usage containers was blocked, was
able to attain over 550,000 writes/second in a 10 node cluster using 55,000 writes/second
per node is good and clearly meets or exceeds. CPU utilization never exceeded 25% of the
available 400 cores. If the applications were not blocked peak throughput fell to 40% and
95% latency was 10 milliseconds while MAX latency was 500 milliseconds

Example Client to cluster on Remote Rack - Mixed load

Throughput
10,653 op/s [READ: 7,989 op/s, WRITE: 2,664 op/s]

Latency median : 80.4 ms [READ: 80.5 ms, WRITE: 80.4 ms]
Latency 95th percentile : 112.9 ms [READ: 114.0 ms, WRITE: 114.7 ms]

Latency 99.9th percentile : 148.6 ms [READ: 159.5 ms, WRITE: 153.8ms]
Latency max : 313.6 ms [READ: 313.6 ms, WRITE: 313.5ms]

Thank you and we would like to acknowledge
1. Support from Packet.net

2. Support from IBM GEP

3. Support from AWS through the activate program

4. Questions?

 Contact info :

 mksingh@mitylytics.com

 www.mitylytics.com

mailto:mksingh@mitylytics.com

Appendix
Contains - Pricing for AWS from AWS

Jvm profile - Branch prediction misses on ARMv8

 1.65% java libjvm.so [.] ClassFileParser::parse_method
1.29% java libjvm.so [.] CodeHeap::find_start
1.26% java libjvm.so [.] Rewriter::rewrite_bytecodes
1.26% java libjvm.so [.] SymbolTable::lookup_only
 1.18% java libjvm.so [.] SymbolTable::basic_add
1.11% java libjvm.so [.] Monitor::lock
1.11% java libpthread-2.23.so [.] pthread_getspecific
1.08% java libjvm.so [.] constantPoolHandle::remove
1.05% java libjvm.so [.] ClassFileParser::parse_constant_pool_entries
1.05% java libjvm.so [.] InterpreterRuntime::resolve_i
0.90% java [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
0.88% java libjvm.so [.] Rewriter::compute_index_map

a. 0.52% java [kernel.kallsyms] [k] __vma_link_list
b. 0.52% java libjvm.so [.] methodHandle::remove
c. 0.79% java libjvm.so [.] Symbol::operator new
d. 0.78% java libjvm.so [.] binary_search
e. 0.74% java libc-2.23.so [.] memset
f. 0.73% java libjvm.so [.] SpaceManager::allocate_work

g. 0.71% java libjvm.so [.] ConstMethod::allocate
h. 0.67% java libjvm.so [.] TypeArrayKlass::allocate_common
i. 0.66% java [kernel.kallsyms] [k] link_path_walk
j. 0.62% java libjvm.so [.] vmSymbols::find_sid

k. 0.62% java libjvm.so [.] Symbol::equals
l. 0.62% java libc-2.23.so [.] _IO_getc

m. 0.61% java libjvm.so [.] AdapterHandlerLibrary::get_adapter
n. 0.61% java [kernel.kallsyms] [k] do_group_exit
o. 0.60% java libc-2.23.so [.] strnlen
p. 0.60% java [kernel.kallsyms] [k] mprotect_fixup
q. 0.60% java libjvm.so [.] icache_flush
r. 0.59% java libjvm.so [.] Monitor::ILock
s. 0.56% java libjvm.so [.] InterpreterRuntime::resolve_get_put
t. 0.55% java libjvm.so [.] Metaspace::allocate

u. 0.54% java libjvm.so [.] klassVtable::compute_vtable_size_and_num_mirandas
v. 0.52% java [kernel.kallsyms] [k] __vma_link_list
w. 0.52% java libjvm.so [.] methodHandle::remove

1. 0.79% java libjvm.so [.] Symbol::operator new
2. 0.78% java libjvm.so [.] binary_search
3. 0.74% java libc-2.23.so [.] memset
4. 0.73% java libjvm.so [.] SpaceManager::allocate_work
5. 0.71% java libjvm.so [.] ConstMethod::allocate
6. 0.67% java libjvm.so [.] TypeArrayKlass::allocate_common
7. 0.66% java [kernel.kallsyms] [k] link_path_walk
8. 0.62% java libjvm.so [.] vmSymbols::find_sid
9. 0.62% java libjvm.so [.] Symbol::equals

10. 0.62% java libc-2.23.so [.] _IO_getc
11. 0.61% java libjvm.so [.] AdapterHandlerLibrary::get_adapter
12. 0.61% java [kernel.kallsyms] [k] do_group_exit
13. 0.60% java libc-2.23.so [.] strnlen
14. 0.60% java [kernel.kallsyms] [k] mprotect_fixup
15. 0.60% java libjvm.so [.] icache_flush
16. 0.59% java libjvm.so [.] Monitor::ILock
17. 0.56% java libjvm.so [.] InterpreterRuntime::resolve_get_put
18. 0.55% java libjvm.so [.] Metaspace::allocate
19. 0.54% java libjvm.so [.]klassVtable::compute_vtable_size_and_num_mirandas

AWS - GPU instance pricing - Very expensive

Name GPUs vCPUs RAM
(GiB)

Network

Bandwidth

Price/Hour* RI Price /
Hour**

p2.xlarge 1 4 61 High $0.900 $0.425

p2.8xlarge 8 32 488 10 Gbps $7.200 $3.400

p2.16xlarge 16 64 732 20 Gbps $14.400 $6.800

Dedicated host pricing for i3
1-YEAR TERM

Payment

Option Upfront Monthly*

Effective

Hourly**

Savings

over

On-Dema

nd On-Demand Hourly

No Upfront $0 $3048.48 $4.176 24%

$5.491 per HourPartial Upfront $15633 $1303.05 $3.570 35%

All Upfront $30642 $0 $3.498 36%

Model vCPU Mem
(GiB)

Networking
Performance

Storage (TB)

i3.large 2 15.25 Up to 10
Gigabit

1 x 0.475 NVMe SSD

i3.xlarge 4 30.5 Up to 10
Gigabit

1 x 0.95 NVMe SSD

i3.2xlarge 8 61 Up to 10
Gigabit

1 x 1.9 NVMe SSD

i3.4xlarge 16 122 Up to 10
Gigabit

2 x 1.9 NVMe SSD

i3.8xlarge 32 244 10 Gigabit 4 x 1.9 NVMe SSD

i3.16xlarge 64 488 20 Gigabit 8 x 1.9 NVMe SSD

I3 4xlarge pricing
STANDARD 1-YEAR TERM

Payment

Option

Upfron

t

Monthly

*

Effective

Hourly**

Savings over

On-Demand

On-Demand

Hourly

No Upfront $0 $692.77 $0.949 24%

$1.248 per HourPartial Upfront $3553 $296.38 $0.812 35%

All Upfront $6964 $0 $0.795 36%

