Cassandra on Armv8 - A comparison with x86
and other platforms

Sankalp Sah, Manish Singh
MityLytics Inc

Why ARM for Cassandra ?

RISC architecture as opposed to x86
Lower Cost

Thermals

Power and it’s management

Cost per operation

High number of CPUs on each board
Memory throughput

Lots of simple instructions executed in parallel

Caveats

1. Bleeding edge

2. Performance not yet tuned

3. Efforts on to tune for ARM via
AdoptJDK and Linaro distributions

ARMv8 - Specifications of platform
Each machine :

1. 96-core Cavium ThunderX @2GHz
2. 128GB RAM

3. 1x340GB Enterprise SSD

4. 2 x 10Gbps Bonded Ports

Evaluation - The operator view

e Cost - $0.50/hour at Packet.net 96 core
ThunderX from cavium at 2.0GHz

Thermals

Power consumption
Dollar cost per-operation
Utilization - Workload fit

Evaluation of Performance - micro perspective

e Write operations

Read-write mix

Max achievable

Latency

Co-tenanted applications - should not
evaluate in isolation.

1 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 192,449
b. Sustained Throughput - 129,170

2. Latency
a. Latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 2.6 [WRITE:2.6]
d. latency 99th percentile :7.3 [WRITE:7.3]
e. latency 99.9th percentile : 170.9 [WRITE:170.9]
f. latency max : 321.6 [WRITE:321.6]

10 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 220,000
b. Sustained Throughput - 137,689

2. Latency
a. latency mean : 1.4 WRITE:1.4]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.3 [WRITE:1.3]
d. latency 99th percentile :4.3 [WRITE:4.3]
e. latency 99.9th percentile : 45.4 [WRITE:45.4]
f. latency max : 397.0 [WRITE:397.0]

20 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 193,220
b. Sustained Throughput - 124,784

2. Latency
a. latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.4 [WRITE:1.4]
d. latency 99th percentile :4.3 [WRITE:4.3]
e. latency 99.9th percentile : 41.1 [WRITE:41.1]
f. latency max : 567.4 [WRITE:567.4]

50 million writes with default cassandra config in a 3-node
cluster

1. Throughput
a. Max operations per sec - 206k
b. Sustained Throughput - 129,000

2. Latency
a. latency mean : 1.5 [WRITE:1.5]
b. latency median : 0.8 [WRITE:0.8]
c. latency 95th percentile : 1.3 [WRITE:1.3]
d. latency 99th percentile :2.1 [WRITE:2.1]
e. latency 99.9th percentile : 72.3 [WRITE:72.3]
f. latency max : 584.0 [WRITE:584.0]

1 million Read-Write mixed workloads -75%read 25%

writes

1. Throughput
a. Max operations per sec - 124k
b. Sustained Throughput - 123k

2. Latency
a. [atency mean : 2.1 [READ:2.5, WRITE:1.2]
b. latency median : 0.7 [READ:0.7, WRITE:0.7]
c. latency 95th percentile :6.2 [READ:6.4, WRITE:2.2]
d. latency 99th percentile :7.6 [READ:8.1, WRITE:2.7]
e. latency 99.9th percentile : 51.5 [READ:54.7, WRITE:25.3]
f. latency max : 124.0 [READ:124.0, WRITE:113.0]

10 million Read-Write mixed workloads -75%read 25%

writes

Throughput

a. Peak 150,842
b. Sustained 122,000

—

2. Latency
a. latency mean : 4.9 [READ:5.1, WRITE:4.1]
b. latency median : 2.2 [READ:2.3, WRITE:1.7]
c. latency 95th percentile :6.2 [READ:6.7, WRITE:5.4]
d. latency 99th percentile :25.2 [READ:88.8, WRITE:85.3]
e. latency 99.9th percentile : 125.9 [READ:128.7, WRITE:127.2]
f. latency max : 256.2 [READ:256.2, WRITE:247 .4]

20 million Read-Write mixed workloads -/5%read 25%

writes
1. Throughput
a. Peak 147k
b. Sustained 138k
2. Latency
a. latency mean : 6.6 [READ:6.8, WRITE:5.8]
b. latency median : 3.1 [READ:3.3, WRITE:2.7]
c. latency 95th percentile : 9.6 [READ:10.5, WRITE:8.5]
d. latency 99th percentile :97.7 [READ:104.3, WRITE:99.6]
e. latency 99.9th percentile : 138.6 [READ:142.0, WRITE:140.5]
f. latency max : 429.4 [READ:429.4, WRITE:421.9]

50 million Read-Write mixed workloads -75% Read 25%

Writes
1. Throughput
a. Peak 155k
b. Sustained 135k
2. Latency
a. (atency mean : 6.7 [READ:6.9, WRITE:6.0]
b. latency median : 3.2 [READ:3.4, WRITE:2.7]
c. latency 95th percentile : 8.6 [READ:9.5, WRITE:8.0]
d. latency 99th percentile :101.3 [READ:117.9, WRITE:107.8]
e. latency 99.9th percentile : 140.0 [READ:142.4, WRITE:141.6]
f. latency max : 229.2 [READ:229.2, WRITE:186.4]

Perf counters for ARM - while running cassandra stress

Overall CPU at 44%, Memory usage at 60GB

711069.602520
14,802
137
7,207
7,422,259,052,720
3,929,716,281
7,384,719,523,004
43,938,297,479

6,114,998,824
375,388,710

task-clock (msec)
context-switches
cpu-migrations
page-faults

cycles
stalled-cycles-frontend
stalled-cycles-backend
instructions

branches
branch-misses

#
#
22
#
e
e
H
#
#
#
W

96.046 CPUs utilized

0.004 K/sec

0.000 K/sec

0.002 K/sec

2.000 GHz

0.05% frontend cycles idle
99.49% backend cycles idle
0.01 insns per cycle

168.07 stalled cycles per insn
1.648 M/sec

6.14% of all branches

= O © 0 NS o0N =

Performance

285.560310
359
231
2,855
565,162,728
114,307,459
280,646,883
205,551,207

28,882,484
4,453,137

counter stats for the JVM

task-clock (msec) # 1.239 CPUs utilized
context-switches 0.001 M/sec
cpu-migrations 0.809 K/sec
page-faults 0.010 M/sec
cycles 1.979 GHz

stalled-cycles-frontend
stalled-cycles-backend
instructions

20.23% frontend cycles idle
49.66% backend cycles idle
0.36 insns per cycle

1.37 stalled cycles per insn
branches # 101.143 M/sec
branch-misses # 15.42% of all branches

o3 o3 B OH HE H R

Packet.net Type-1 node

e Intel E3-1240 v3 - 4 physical Cores @ 3.4 GHz
o 32GB

e 2x 120GB Enterprise SSD

e 2 x 1Gbps Bonded Ports

e 3$0.40/hr - on demand pricing

1 million writes

Throughput - 3 node

Peak . 174877

Sustained . 154738

Latency:

latency mean : 1.3 [WRITE:1.3]
latency median : 0.7 [WRITE:0.7]

latency 95th percentile : 2.7 [WRITE:2.7]
latency 99th percentile : 5.0 [WRITE:5.0]
latency 99.9th percentile : 44.7 [WRITE:44.7]
latency max : 82.5 [WRITE:82.5]

1 million Read-Write mixed workloads -75%read 25%
writes

—

Throughput
a.

Max operations per sec - 117k

b. Sustained Throughput - 117k
2. Latency
a. latency mean : 1.5 [READ:1.6, WRITE:1.3]
b. latency median : 1.5 [READ:0.7, WRITE:0.6]
c. latency 95th percentile :4.2[READ:4.5, WRITE:3.6]
d. latency 99th percentile : 9.9 [READ:10.6, WRITE:9.6]
e. latency 99.9th percentile : 86.5 [READ:86.7, WRITE:51.6]
f. latency max : 88 ms [READ:88.0, WRITE:86.2]

10 million Read-Write mixed workloads -75%read 25%

writes

Throughput
a. Max operations per sec - 86k
b. Sustained Throughput - 80k

—

2. Latency
a. latency mean . 5.0 [READ:5.1, WRITE:4.9]
b. latency median . 1.8 [READ:1.8, WRITE:1.7j
c. latency 95th percentile : 15.5[READ:16.4, WRITE:14.8
d. latency 99th percentile : 43.0 [READ:49.2, WRITE:43.5
e. latency 99.9th percentile : 87.4 [READ:97.4, WRITE:86.1]
f. latency max . 377.3 [READ:377.3, WRITE:299.7]

Performance counters - while running Cassandra-stress -
Type 1

243304.786828 task-clock (msec) # 7.994 CPUs utilized
4,770,619 context-switches # 0.020 M/sec
533,669 cpu-migrations # 0.002 M/sec

32,955 page-faults # 0.135 K/sec
823,721,139,097 cycles # 3.386 GHz
793,542,050,783 instructions # 0.96 insns per cycle

139,500,426,441 branches # 573.357 M/sec
1,239,316,562 branch-misses # 0.89% of all branches

ldle perf counters - Type 1 cluster on Packet

75615.159586 task-clock (msec) # 7.995 CPUs utilized

1,504 context-switches # 0.020 K/sec

23 cpu-migrations # 0.000 K/sec

2 page-faults # 0.000 K/sec

102,605,745 cycles # 0.001 GHz
17,332,602 instructions # 0.17 insns per cycle
3,499,854 branches # 0.046 M/sec
412,360 branch-misses

11.78% of all branches

Characterisation for Type-1

1. Peak CPU hit 81%

2. Peak Memory hit ~100

3. Performance starts to degrade after 1 million
read-writes.

Amazon i3.4xlarge - Tmillion writes - 3 nodes

Throughput:
Peak 135,700
Sustained 114,906 op/s [WRITE: 114,906 op/s]

Latency:
Latency mean . 1.7 ms [WRITE: 1.7 ms]
Latency median . 1.1 ms [WRITE: 1.1 ms]

Latency 95th percentile : 4.0 ms [WRITE: 4.0 ms]
Latency 99th percentile : 10.5 ms [WRITE: 10.5 ms]
Latency 99.9th percentile : 90.8 ms [WRITE: 90.8 ms]
Latency max : 218.8 ms [WRITE: 218.8 ms]

Amazon i3.4xlarge - 10 million writes - 3 nodes

Throughput : 126,064 op/s [WRITE: 126,064 op/s]
Latency mean . 1.6 ms [WRITE: 1.6 ms]
Latency median . 1.0 ms [WRITE: 1.0 ms]

Latency 95th percentile : 3.8 ms [WRITE: 3.8 ms]
Latency 99th percentile : 8.5 ms[WRITE: 8.5 ms]
Latency 99.9th percentile : 99.4 ms [WRITE: 99.4 ms]
Latency max : 268.7 ms [WRITE: 268.7 ms]

AWS i3 4xlarge - 20 million writes - 3 nodes

Throughput

Latency mean

Latency median
Latency 95th percentile
Latency 99th percentile

Latency 99.9th percentile :

Latency max

123,022 op/s [WRITE: 123,022 op/s]
1.6 ms [WRITE: 1.6 ms]

1.0 ms [WRITE: 1.0 ms]

3.8 ms [WRITE: 3.8 ms]

8.4 ms [WRITE: 8.4 ms]

82.9 ms [WRITE: 82.9 ms]

195.3 ms [WRITE: 195.3 ms]

AWS i3 4xlarge - 50 million writes - 3 node

Throughput

Latency mean

Latency median
Latency 95th percentile
Latency 99th percentile

Latency 99.9th percentile :

Latency max

121,055 op/s [WRITE: 121,055 op/s]

1.6 ms [WRITE: 1.6 ms]
1.0 ms [WRITE: 1.0 ms]
3.8 ms [WRITE: 3.8 ms]
8.8 ms [WRITE: 8.8 ms]
80.8 ms [WRITE: 82.9 ms]
156 [WRITE: 156.3 ms]

AWS i3 4x| perf counters

JVM
1309.462273 task-clock (msec)
1,296 context-switches
87 cpu-migrations

3,304 page-faults

16.294 CPUs utilized

0.990 K/sec

0.066 K/sec

0.003 M/sec

AWS i3.4xlarge - 3 node - with external client

Peak throughput - 310k ops/sec

Op rate . 272,544 op/s [WRITE: 272,544 op/s]
Partition rate . 272,544 pk/s [WRITE: 272,544 pk/s]
Row rate : 272,544 row/s [WRITE: 272,544 row/s]
Latency mean ;3.3 ms [WRITE: 3.3 ms]

Latency median . 1.9 ms [WRITE: 1.9 ms]

Latency 95th percentile : 5.7 ms [WRITE: 5.7 ms]
Latency 99th percentile : 71.2 ms [WRITE: 71.2 ms]
Latency 99.9th percentile : 92.5 ms [WRITE: 92.5 ms]
Latency max : 254.9 ms [WRITE: 254.9 ms]

AWS i3.4xlarge - single node - write workload

Peak Throughput ; 133k ops/sec - 20 million operations.
Sustained throughput ; 114k ops/sec

Latency mean . 1.7ms

Latency median ; 1.2 ms

Latency 95th percentile 3.2 ms

Latency 99th percentile 6.6 ms

Latency 99.9th percentile : 94.0 ms
Latency max ; 584.1 ms

AWS i3.4xlarge - single node - mixed read 75%-write 25%

Peak Throughput
Sustained throughput

Latency mean

Latency median
Latency 95th percentile
Latency 99th percentile

Latency 99.9th percentile :

Latency max

112.5k ops/sec - 100 million operations.
102k ops/sec

8.9 ms [READ: 8.9 WRITE: 8.9ms]

6.4 ms [READ: 6.4 WRITE: 6.4 ms]

19.3 ms [READ: 19.4 WRITE: 19.6 ms]
65.4 ms [READ: 65.4 WRITE: 65.5 ms]
103.5 ms [READ: 103.4 WRITE: 103.9 ms]
276.0 ms [READ: 276.0 WRITE: 271.3 msj

GPU - g2.8xlarge node - 1 million writes

Throughput :

Peak throughput : 118,973 ops/sec

Sustained : 102,840 ops/sec

Latency:

Latency mean . 1.8ms [WRITE: 1.8 ms]
Latency median : 14ms [WRITE: 1.4 ms]

Latency 95th percentile : 2.7ms [WRITE: 2.7 ms]
Latency 99th percentile : 4.7ms [WRITE: 4.7 ms]
Latency 99.9th percentile : 125.3 ms [WRITE: 125.3 ms]
Latency max . 204.7 ms [WRITE: 204.7 ms]

GPU - g2.8xlarge node - 10 million writes

Throughput :

Peak throughput : 131,658 ops/sec

Sustained : 109,202 ops/sec

Latency:

Latency mean . 1.8 ms [WRITE: 1.8 ms]
Latency median ;1.5 ms [WRITE: 1.5 ms]

Latency 95th percentile : 2.6 ms [WRITE: 2.6 ms]
Latency 99th percentile : 3.7 ms [WRITE: 3.7 ms]
Latency 99.9th percentile : 118.0 ms [WRITE: 118.0 ms]
Latency max . 951.0 ms [WRITE: 551.0 ms]

GPU - g2.8xlarge node - 20 million writes

Throughput :

Peak throughput : 120,640 ops/sec

Sustained : 99,776 ops/sec

Latency:

Latency mean : 2.0 ms [WRITE: 1.8 ms]
Latency median ;1.5 ms [WRITE: 1.5 ms]

Latency 95th percentile : 2.8 ms [WRITE: 2.6 ms]
Latency 99th percentile : 3.9 ms [WRITE: 3.7 ms]
Latency 99.9th percentile : 109.6 ms [WRITE: 118.0 ms]
Latency max . 1201.7 ms [WRITE: 551.0 ms]

GPU - g2.8xlarge node - /5% Read- 25%write mixed workload

Throughput :

Peak throughput : 117, 759 ops/sec - For 10 million operations

Sustained : 107, 049 ops/sec

Latency:

Latency mean . 8.5 ms [READ 8.8 ms, WRITE: 7.6 ms]
Latency median . 6.6 ms [READ 6.8, WRITE: 5.8 ms]

Latency 95th percentile : 15.5 ms [READ 15.5 ms WRITE: 14.4 ms]
Latency 99th percentile : 66.5 ms [READ 67.0 ms WRITE: 64.1 ms]
Latency 99.9th percentile : 91.3 ms [READ 91.8 WRITE: 90.0 ms]

Latency max . 213.1 ms [READ 213.1 WRITE: 134.3 ms]

ARMv8 - Type 2a node from Packet - 10 million writes

Throughput :

Peak throughput : 140,2470ops/sec

Sustained : 91,675 ops/sec
Latency:

Latency mean . 2.1ms
Latency median ;1.3 ms

Latency 95th percentile : 3.5 ms
Latency 99th percentile : 8.1 ms
Latency 99.9th percentile : 83.8 ms

[WRITE: 2.1 ms]
[WRITE: 1.3 ms]
[WRITE: 3.5 ms]
[WRITE: 8.1 ms]
[WRITE: 83.8 ms]

Latency max . 470.3 ms [WRITE: 470.3 ms]

ARMv8 - Type 2a node from Packet - 75% Read- 25%write
mixed workload

Throughput :

Peak : 99,110 ops/sec - For 10 million operations
Sustained : 54,909 ops/sec

Latency:

Latency mean . 2.2ms [READ: 2.5 ms WRITE: 1.0 ms]
Latency median . 1.7 ms[READ: 1.8 ms WRITE: 0.7 ms]

Latency 95th percentile : 2.4 ms[READ: 2.5 ms WRITE: 1.0 ms]
Latency 99th percentile : 66.5 ms [READ 3.5 ms WRITE: 1.2 ms]
Latency 99.9th percentile : 91.3 ms [READ: 128.2 WRITE: 22.9 ms]
Latency max . 301.0 ms [READ 301.0 ms WRITE: 286.1 ms]

Some key considerations

e How many bytes can you push through the network.

e How much memory throughput can you get?

e How many instructions can you execute? Several different
measures

e How much storage bandwidth can you get?

Characterisation for ARMv8

Scales well as writes go up to 50 million on a 3-node cluster with peak CPU and
memory at 40-50% even with large number of client threads on the machines.
Performs favorably when compared to other bare-metal co-tenanted clusters for eg
packet type-1 nodes - where peak write performance for 3-node cluster was 117k write
operations/sec and memory usage was 90% while peak CPU usage was 88%.
Performs favorably to VM environments such as the recommended Amazon i3 nodes
where peak performance is 126k write operations/sec for a 3-node multi-tenanted

system.

Cassandra

Massive number of deployments

JVM performance

What is optimizable in Cassandra for ARM based server
What kind of servers should be used

What settings?

Cassandra is CPU bound before being memory bound
Local storage vs Block storage

I/O

Kernel settings

Network settings

Configuration

Performance affected by several additional factors

1. Workload mix
2. Co-located clusters

3. Network design

Applications running in your ecosystem

What other apps or frameworks or clusters are running?
How you can carve up infrastructure resources?

How to observe where you have spare capacity?
Scheduling appropriately

Maintaining performance

An example - where Cassandra was running in a
containerized environment

Single flat 10Gig network
Co-tenant applications other than Cassandra present on machine - fairly common
given that a lot of deployments use Spark co-located with Cassandra.

1. CoreOS

2. Converged infrastructure
3. Mesos

4. Docker

5.

6.

Performance numbers for Containerized environment

At a customer site ten node cluster gave a sustained throughput of 550,000 ops/sec in a
mixed 80/20 read/write workload where each node has 40 cores

Finding:

Cassandra, when co-tenancy of multiple high network usage containers was blocked, was
able to attain over 550,000 writes/second in a 10 node cluster using 55,000 writes/second
per node is good and clearly meets or exceeds. CPU utilization never exceeded 25% of the
available 400 cores. If the applications were not blocked peak throughput fell to 40% and
95% latency was 10 milliseconds while MAX latency was 500 milliseconds

Example Client to cluster on Remote Rack - Mixed load

Throughput
10,653 op/s [READ: 7,989 op/s, WRITE: 2,664 op/s]

Latency median . 80.4 ms [READ: 80.5 ms, WRITE: 80.4 ms]
Latency 95th percentile : 112.9 ms [READ: 114.0 ms, WRITE: 114.7 ms]

Latency 99.9th percentile : 148.6 ms [READ: 159.5 ms, WRITE: 153.8ms]
Latency max : 313.6 ms [READ: 313.6 ms, WRITE: 313.5ms]

Thank you and we would like to acknowledge

Support from Packet.net
Support from IBM GEP
Support from AWS through the activate program

W N

Questions¢
Contact info :

mksingh@mitylytics.com

www.mitylytics.com

mailto:mksingh@mitylytics.com

Appendix
Contains - Pricing for AWS from AWS

Jvm profile - Branch prediction misses on ARMv8

java libjvm.so [.] ClassFileParser::parse_method

java libjvm.so [.] CodeHeap::find_start

java libjvm.so [.] Rewriter::rewrite bytecodes

java libjvm.so [.] SymbolTable::lookup _only

java libjvm.so [.] SymbolTable::basic_add

java libjvm.so [.] Monitor::lock

java libpthread-2.23.so [.] pthread getspecific

java libjvm.so [.] constantPoolHandle::remove

java libjvm.so [.] ClassFileParser::parse constant_pool entries
java libjvm.so [.] InterpreterRuntime::resolve i

java [kernel.kallsyms] [k] raw_spin_unlock_irgrestore
java libjvm.so [.] Rewriter::compute index_map

E<ECE 00T O053 —Fx—~TQ@ 202000

java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java
java

[kernel.kallsyms] [k] __vma_link_list

libjvm.so [.] methodHandle::remove

libjym.so [.] Symbol::operator new

libjym.so [.] binary_search

libc-2.23.s0 [.] memset

libjvm.so [.] SpaceManager::allocate_work
libjym.so [.] ConstMethod::allocate

libjym.so [.] TypeArrayKlass::allocate_common
[kernel.kallsyms] [K] link_path_walk

libjvm.so [.] vmSymbols::find_sid

libjvm.so [.] Symbol::equals

libc-2.23.s0 [.] 10 _getc

libjvm.so [.] AdapterHandlerLibrary::get_adapter

[kernel.kallsyms] [k] do_group_exit
libc-2.23.s0 [.] strnlen
[kernel.kallsyms] [k] mprotect_fixup

libjvm.so [.] icache flush

libjvm.so [.] Monitor::ILock

libjym.so [.] InterpreterRuntime::resolve_get put

libjym.so [.] Metaspace::allocate

libjvm.so [.] klassVtable::compute_ vtable size and _num_mirandas
[kernel.kallsyms] [k] __vma_link_list

libjym.so [.] methodHandle::remove

-

11.
12.
13.
14.
15.
16.
17.
18.
19.

©NOOR LN

java
java
java
java
java
java
java
java
java
java
java
java
java

java

java
java
java

java
java

libjvm.so [.] Symbol::operator new

libjym.so [.] binary_search

libc-2.23.s0 [.] memset

libjvm.so [.] SpaceManager::allocate_work
libjvm.so [.] ConstMethod::allocate

libjym.so [.] TypeArrayKlass::allocate_common
[kernel.kallsyms] [K] link_path_walk

libjvm.so [.] vmSymbols::find_sid

libjvm.so [.] Symbol::equals

libc-2.23.s0 [.] _10_getc

libjvm.so [.] AdapterHandlerLibrary::get_adapter

[kernel.kallsyms] [k] do_group_exit
libc-2.23.s0 [.] strnlen
[kernel.kallsyms] [k] mprotect_fixup

libjvm.so [.] icache_flush

libjvm.so [.] Monitor::lILock

libjvm.so [.] InterpreterRuntime::resolve_get put

libjym.so [.] Metaspace::allocate

libjym.so [.]klassVtable::compute vtable size and num_mirandas

AWS - GPU instance pricing - Very expensive

NEINlE GPUs vCPUs RAM Network Price/Hour* RI Price /
(GiB) Hour**
Bandwidth

p2.xlarge

p2.8xlarge 8 Ky 488 10 Gbps $7.200 $3.400

p2.16xlarge $14.400

1-YEAR TERM

Savings
over
Payment Effective On-Dema
Option Upfront Monthly* Hourly** nd On-Demand Hourly

No Upfront $0 $3048.48

Partial Upfront $15633

$1303.05 $5.491 per Hour

Model vCPU Mem Networking Storage (TB)
(GiB) Performance

i3.large Up to 10 1x0.475 NVMe SSD
Gigabit

i3.xlarge 4 30.5 Up to 10 1 x 0.95 NVMe SSD
Gigabit

i3.2xlarge Up to 10 1 x 1.9 NVMe SSD
Gigabit

i3.4xlarge 16 122 Up to 10 2 x 1.9 NVMe SSD
Gigabit

i3.8xlarge 10 Gigabit 4 x 1.9 NVMe SSD

i3.16xlarge 64 488 20 Gigabit 8 x 1.9 NVMe SSD

|3 4xlarge pricing

Payment Upfron Monthly
Option t *

No Upfront $0 $692.77

Partial Upfront $3553 $296.38

All Upfront $0

Effective

Hourly**

Savings over

On-Demand

On-Demand

Hourly

$1.248 per Hour

