
Container Pods with Docker Compose
in Apache Mesos

1

Summary

Goals:

1. Treating Apache Mesos and docker as first class citizens, the platform needs
to seamlessly run and scale docker container pods in Mesos with a
standardized pod spec file.

2. Developers can develop and run the pod locally using a spec file and then use
the same spec file to launch it in a QA/Production cluster.

Solution:

Docker Compose Mesos Executor (https://github.com/PayPal/dce-go)

https://github.com/PayPal/dce-go

What are Pods?

• Pods represent a collection of containers treated as a single unit for scheduling and
deployment.

• Pods are treated as single scaling unit.

• Containers in Pods will generally share one or more namespaces: network, pid, ipc etc

• Containers in Pods should have a common cgroup to be kept under check as a unit to
not steal resources from other pods in the host.

• Colocation using constraints != Pod

Why are Pods needed?

• Migrating legacy workloads running in a single node.
 Lift and shift.
 Gives time to extract common services duplicated in each pod into a system service

when relevant.

• Pods helps to create a modular application by composing different services.
 Side-car, Adapter, Ambassador are common patterns

• Pods helps eliminate pre and post deployment steps.
 Helps model transient short tasks (short lived containers)

Docker Compose

• Compose is a elegant tool for defining and running multiple docker containers.

• Cherished tool in the community over the years for local development.

• Version 2.X preserves strictly all the local features. In this version, it interacts with a
single docker engine, mostly running locally.

• Version 3.X introduces compose for docker swarm and deprecates certain features of
2.X. For now, they remain as 2 separate version tracks.

Pods Modelled in Docker Compose

• Pods are containers bundled together locally. So, relies on version 2.x compose
version.

• Pods represented by compose can preserve all the first class docker volume and
network plugins.

• Pods can have flexibility on collapsing namespaces in any combination between the
containers.

• Containers in Pods can have strict ordering guarantees by using conditional
constructs of depends_on.

• Pods can refer to externally created volumes and networks.

• Multiple files can be merged to construct the right pod definition for an environment.
Ex: base, qa, prod compose files.

• Easy to spawn multiple pods of same application with different versions in same local
environment without conflicts.

Mesos Architecture

Mesos Key Abstractions

Master

Agent

Framework

Executor

Task Task

Executor

Task

Offer (Resources) Task/Executor

Resources Task/Executor

Docker Compose Executor in Mesos

Docker Compose Executor

Task (Docker Container Pod spawned as Child
Cgroup of Parent Cgroup)

Mesos Parent Cgroup Container

Mesos Agent

Launcher

Cgroups MEM
Isolator

Cgroups CPU
Isolator

Mesos Containerizer

Cgroup Hierarchy

• Each container in pod has a child cgroup under the parent mesos task cgroup. Meets
Pod criteria of containers in pod sharing a cgroup.

• Cgroups CFS hard limits (bandwidth controls) and memory limits assigned to the
parent cgroups will cover all containers in pods.

• Individual containers will not be limited unless specified but cannot go over parent.

• Make sure to enable memory hierarchy with use_hierarchy flag.

DCE-GO features

• Implements mesos executor callbacks to maintain the lifecycle of a pod.

• Massages compose file to add cgroup parent, mesos labels and edit certain sections to
resolve any naming conflict etc

• Collapses network namespace by default.

• Provides pod monitor to not only kill entire pod on unexpected container exit but
also when a container becomes unhealthy as per docker healthchecks.

• Supports running multiple compose files.

• Mesos Module provided to prevent pod leaks in rare case of executor crashes.

• Provides plugins.

• Last but not the least any existing Mesos Frameworks like Aurora, Marathon etc can
use DCE directly without making ANY framework changes.

12

PLUGINS

What are Plugins?

• Plugins provides a way to easily extend inner workings of DCE.

• Plugins can be used to customize DCE without having to understand exactly
how DCE is implemented internally. Plugins make it easy to experiment
with new features.

• Plugin mechanism helps you easily enable and disable features.

• Plugins essentially provide hooks before and after launch/kill task mesos
callbacks to implement custom behavior.

• Plugins can be chained with ordering.

Default Plugin

DCE-GO comes with default General Plugin. This Plugin updates compose files
so that multiple pods are able to launch on a host. It largely covers following:

• Decorate various compose sections to resolve all the conflicts.

• Label each container with specific taskId and executorId. This information is
used to clean up pod.

• Adding pod to parent mesos task cgroup.

• Creating infrastructure container in pod for allowing to collapse network
namespace for containers in a pod.

Mesos Hook Module for Compose Pods

• Mesos Modules help extend inner functionality using shared libs. Can run in
Master and/or Agent.

• Mesos Modules should be built against the mesos version running in cluster.

• Different classification of Modules: Allocator, Isolator, Hooks etc

• Hooks Modules tie into events and their context. DCE-GO leverages
executor removal event hook in an agent. Implements
ComposePodCleanupHook Module.

• That hook ensures pods are cleaned up on any unexpected executor crash.

Current Ecosystem around Pods

1. Docker swarm (as of 1.2.6) does not support local pods.
 Docker compose deploy takes a compose definition and schedules the containers across swarm cluster and

connects them via overlay network.
 Using constraints not the same.
 Most likely to be supported in future.

2. K8 has excellent support for pods but does not treat docker as first class.
 Different volume and network specs
 CRI mostly going to hook to containerd directly. Skip docker engine.
 Pod spec different than compose spec and docker commands do not work (equivalent command provided).
 Image is the only common thing.

3. Mesos added in 1.1 pod support via experimental Task Groups and Nested Container.
 Not docker specific and pod can represent any collection of tasks.
 Frameworks needs to make changes to support this.
 Task Groups spec obviously separate from compose spec.
 Universal Containerizer and set of isolators defining a container runtime separate from docker.
 However, Mesos continues to remain extremely flexible!

DCE-GO DEMO

17

• DCE-GO project (https://github.com/PayPal/dce-go)

• Deprecates (https://github.com/mesos/docker-compose-executor)

• Mesos Architecture and Key Abstractions
diagrams(https://www.slideshare.net/InfoQ/mesos-a-stateoftheart-
container-orchestrator)

Links and References

https://github.com/PayPal/dce-go
https://github.com/mesos/docker-compose-executor
https://www.slideshare.net/InfoQ/mesos-a-stateoftheart-container-orchestrator

	Container Pods with Docker Compose�in Apache Mesos
	Summary
	What are Pods?
	Why are Pods needed?
	Docker Compose
	Pods Modelled in Docker Compose
	Mesos Architecture
	Mesos Key Abstractions
	Docker Compose Executor in Mesos
	Cgroup Hierarchy
	DCE-GO features
	Slide Number 12
	What are Plugins?
	Default Plugin
	Mesos Hook Module for Compose Pods
	Current Ecosystem around Pods
	DCE-GO DEMO
	Links and References

