Configuring and Benchmarking
Open vSwitch, DPDK and vhost-user

Pei Zhang (张 培)
pezhang@redhat.com
October 26, 2017
Agenda

1. Background
2. Configure Open vSwitch, DPDK and vhost-user
3. Improve network performance
4. Show results
NFV stands for Network Function Virtualization, it’s a new network architecture concept.
1. Background (2/2)

Fig. ETSI NFV Architecture Framework
1. Background (2/2)

NFVI provides basic environment for network performance.
2. Configure Open vSwitch, DPDK and vhost-user

Fig. Topology
Data Plane Development Kit (DPDK) is a set of libraries and user space drivers for fast packet processing.

- polling mode drivers
- using hugepage memory.
- running mostly in user space.

How performance is improved? - DPDK

![Diagram showing packets flow with DPDK](image)

![Diagram showing standard packets flow](image)
How performance is improved? - vhost-user

vhost-user protocol allows qemu shares virtqueues with a user space process on the same host.
How performance is improved? - Open vSwitch

Open vSwitch (OVS) is designed to be used as a vSwitch within virtualized server environments.

Fig. standard OVS

- **vswitch** (user space)
- **forwarding plane**
- **driver** (kernel space)
- **NIC** (hardware)

Fig. OVS with DPDK

- **vswitch** (user space)
- **forwarding plane** (user space datapath: netdev)
- **poll mode driver**
- **NIC** (hardware)
How performance is improved? - KVM-RT

Real-Time always keeps low latency, it’s used for latency-sensitive workloads.

Real-Time KVM(RT-KVM) is the extension of KVM, it allows the VM to be real time operating system.

KVM-RT can be used in latency-sensitive VNFs.
Peculiarities summary

(1) Handling network packets in user space during whole process.
(2) Polling thread.
(3) Hugepages.

(4) Cores isolation
 - Isolated cores will only be used when explicitly setting.
 - Pin vCPUs to individual cores

(5) Strict NUMA policy
 - Cores and memory used should be same NUMA node with network device.
How to config? - vhost-user socket

```xml
<cpu mode='host-passthrough' check='none'>
    <feature policy='require' name='tsc-deadline'/>
    <numa>
        <cell id='0' cpus='0-3' memory='8388608' unit='KiB' memAccess='shared'/>
    </numa>
</cpu>

<internal type='vhostuser'>
    <mac address='88:66:da:5f:dd:02'/>
    <source type='unix' path='/tmp/vhostuser0.sock' mode='server'/>
    <model type='virtio'/>
    <driver name='vhost'/>
    <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

# ovs-vsctl add-port ovsbr0 vhost-user0 -- set Interface vhost-user0 type=dpdkvhostuserclient options:vhost-server-path=/tmp/vhostuser0.sock
```
How to config? - hugepage

```
# cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-...  default_hugepagesz=1G

# lscpu
Flags: ... pdpe1g ...

<memoryBacking>
  <hugepages>
    <page size='1048576' unit='KiB' nodeset='0'/>
  </hugepages>
  <locked/>
</memoryBacking>
```
How to config? - isolate cores

In normal kernel environment:
Install package: tuned-profiles-cpu-partitioning

Kernel line:
cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-... skew_tick=1
nohz=on
nohz_full=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16
rcu_nocbs=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16
tuned.non_isolcpus=00005555
intel_pstate=disable nosoftlockup

In real time environment:
Install package: tuned-profiles-nfv-host/guest

Kernel line:
cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-... skew_tick=1
isolcpus=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16 nohz=on
nohz_full=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16
rcu_nocbs=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16
intel_pstate=disable nosoftlockup
How to config? - NUMA policy

```bash
# hwloc-ls
Machine (64GB total)
 NUMANode L#0 (P#0 32GB)
  
 NUMANode L#1 (P#1 32GB)
  
 PCIBridge
 PCI 8086:1528
 Net L#7 "p1p1"
 PCI 8086:1528
 Net L#8 "p1p2"

Intel X540-AT2 10G Card
```
How to config? - kvm-rt

```
<cputch>
  <vcpupin vcpu='0' cpuset='30'/>
  <vcpupin vcpu='1' cpuset='31'/>
  <emulatorpin cpuset='2,4,6,8,10'/>
  <vcpusched vcpus='0' scheduler='fifo' priority='1'/>
  <vcpusched vcpus='1' scheduler='fifo' priority='1'/>
</cputch>
```

- Install kernel-rt/kernel-rt-kvm
- Use tuned-profiles-nfv/tuned-profiles-realtime
- Set fifo:1 priority
Testing topology

Note: Using individual core for each port.
(6 cores in this example)
3. Improve network performance

(1) Using multiple queues to improve throughput

(2) Using tuned-cpu-partitioning to get 0-loss packets and lower L2 network latency

(3) Using KVM-RT to get lower cyclic test latency
Cores Number = Ports * Queues
Note: Using individual core for each port each queue. (12 cores in this example)
Higher throughput - multiple queues (2/2)

Open vSwitch for 2 queues:
- `ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0xAAAA(1,3,5,7,9,11,13,15)
- `ovs-vsctl set Interface dpdk0 options:n_rxq=2`
- `ovs-vsctl set Interface dpdk1 options:n_rxq=2`

VM for 2 queues:
- `<interface type='vhostuser'>`
 - `<mac address='88:66:da:5f:dd:02'/>`
 - `<source type='unix' path='/var/run/openvswitch/vhost-user0' mode='client'/>`
 - `<model type='virtio'/>`
 - `<driver name='vhost' queues='2'/>`
 - `<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>`
- `</interface>`
4. Show Results

(1) Multiple queues has better throughput

Single queue: 13.02Mpps (43.75% of line rate 14.88Mpps)

Two queues: 21.13Mpps (71% of line rate 14.88Mpps) (**Better**)

Testing Environment:
- Platform: Red Hat Enterprise Linux 7
- Traffic Generator: MoonGen
- Acceptable Loss: 0.002%
- Frame Size: 64Byte
- Bidirectional: Yes
- Validation run time: 30s
- CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
- NIC: 10-Gigabit X540-AT2
tuned-cpu-partitioning has better 0-loss throughput and L2 network latency

Throughput:
- no cpu-partitioning throughput: 21.13 (0.000718% loss)
- cpu-partitioning throughput: 21.31 (0 loss) (Better)

L2 network latency
- no tuned-cpu-partitioning latency: 1242.073us
- cpu-partitioning latency: 37us (Better)

Testing Environment:
- Platform: Red Hat Enterprise Linux 7
- Traffic Generator: MoonGen
- Running time: 12 hours
- Frame Size: 64Byte
- Bidirectional: Yes
- CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
- NIC: 10-Gigabit X540-AT2
(3) kvm-rt has better cyclic test latency results

non-rt: max cyclic test latency: 00616us

kvm-rt: max cyclic test latency: 00018us (Better)

Testing Environment:
- Platform: Red Hat Enterprise Linux 7
- Testing method: cyclic test
Q&A
Thanks!