
Introducing the
Civil Infrastructure Platform

Jan Kiszka and Yoshitake Kobayashi

LinuxCon Japan, 13-15 July, 2016

Civil Infrastructure Systems are technical systems responsible for

supervision, control, and management of infrastructure supporting

human activities, including, for example,

 Electric power generation

 Energy distribution

 Oil and gas

 Water and wastewater

 Healthcare

 Communications

 Transportation

 Collections of buildings that make up urban & rural

communities.

These networks deliver essential services, provide shelter, and support

social interactions and economic development. They are society's

lifelines.1)

2

Definition

1) adapted from https://www.ce.udel.edu/current/graduate_program/civil.html

https://www.ce.udel.edu/current/graduate_program/civil.html

The evolution of civil infrastructure systems

Core characteristics

Industrial gradeness

 Reliability

 Functional Safety

 Security

 Real-time capabilities

Sustainability

 Product life-cycles of
10 – 60 years

Conservative update
strategy

 Firmware updates only if
industrial gradeness is
jeopardized

 Minimize risk of regression

 Keeping regression test and
certification efforts low

Connected systems

 Interoperability due to
advances in machine-to-
machine connectivity

 Standardization of
communication

 Plug and play based
system designs

Stand-alone systems

 Limited vulnerability

 Updates can only applied
with physical access to the
systems

 High commissioning
efforts

Proprietary nature

 Systems are built from the
ground up for each
product

 little re-use of existing
software building blocks

 Closed systems

Commoditization

 Increased utilization of
commodity (open source)
components, e.g.,
operating system,
virtualization

 Extensibility, e.g., for
analytics

Technology changes

Development time

 Shorter development times
for more complex systems

Maintenance costs

 Low maintenance costs for
commonly uses software
components

 Low commissioning and
update costs

Business needs

Development costs

 Don‘t re-invent the wheel

3

Things to be done

• Join forces for commodity components

• Ensure industrial gradeness for the operating system
platform focusing on reliability, security, and functional
safety.

• Increase upstream work in order to increase quality
and to avoid maintenance of patches

• Share maintenance costs

• Long-term availability and long-term support are
crucial

• Innovate for future technology

• Support industrial IoT architectures and
state-of-the art machine-to-machine connectivity

4

Comparison with existing Alliances

Other domains already benefit from collaborative development: drive instead of follow!

5

In many domains
competing companies collaborate

in alliances already.

(GENIVI, for example)

• Development speed
for shorter product cycles

• High Software quality due to intense
reviews and high test coverage

(Linus’s law)

• Standard platforms enable ecosystems

(e.g. for development tools, system extensions,
new business models)

Consumer Industry

P
la

tf
o

rm
C

o
m

m
u

n
ic

at
io

n

hosted by

Civil Infrastructure Platform to provide software building blocks that support
reliable transportation, power, oil and gas, and healthcare infrastructure

Establish an open source “base layer” of industrial grade software to enable the use
and implementation in infrastructure projects of software building blocks that meet
the safety, reliability, security and maintainability requirements.

• Share development effort for development of industrial grade bases systems.

• Fill the gap between capabilities of the existing OSS and industrial requirements.

• Reference-implementation consisting of

• Specification of on-device software stack and tools infrastructure

• Linux kernel, file system, etc. selected reference hardware

• Build environment and tools for companies to build their own distribution.

• Test framework and test cases

• SDK and APIs

• Trigger development of an emerging ecosystem including tools and domain
specific extensions.

 Initial focus will be on establishing a long term maintenance infrastructure for
selected Open Source components, funded by participating membership fees.

6

CIP Reference Hardware

CIP Reference

Filesystem

image with SDK

CIP Kernel

U
se

r
sp

ac
e

K
er

n
el

Non-CIP packages

Any Linux distribution (e.g. Yocto
Project, Debian, openSUSE, etc.)

may extend/include CIP packages.

H
ar

d
w

ar
e

Specifications Documentation

Im
p

le
m

en
t

7

Scope of activities
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

Linux Kernel

App container
infrastructure (mid-term)

App Framework
(optionally, mid-term)

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts

Build environment
(e.g. yocto recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety
architecture/strategy,
including compliance
w/ standards (e.g.,
NERC CIP, IEC61508)

Long-term support
Strategy:
security patch
management

Standardization
collaborative effort with
others

License clearing

Export Control
Classification

On device software stack Product development
and maintenance

Application life-

cycle management

Security

8

Target Systems

Out of scope:

• Enterprise IT and cloud system platforms.

… Device class no.

ARM M0/M0+/M3/M4

8/16/32-bit,< 100 MHz 32-bit, <1 GHz 32/64-bit, <2 GHz 64-bit, >2 GHz

n MiB flash n GiB flash n GiB flash n TiB flash/HDD

< 1 MiB < 1 GiB < 4 GiB > 4 GiB

Arduino class board Raspberry Pi class board SoC-FPGA, e.g.Zync industrial PC

ARM M4/7,A9,R4/5/7

Networked Node Embedded ServerEmbedded ComputerEmbedded Control Unit

special purpose & server based controllerscontrol systems

multi-purpose controllersPLC gateways

Sensor, field device

1 2 3 4

ARM A9/A35,R7,Intel Atom

Architecture, clock

non-volatile storage

HW ref. platform

ARM offerings1)

RAM

application examples

ARM A53/A72,Core,Xeon

Intel offerings1)

M0/M0+/M3/M4 M4/7,A9,R4/5/7 ARM A9/A35,R7 ARM A53/A72

ARM M0/M0+/M3/M4 ARM M4/7,A9,R4/5/7 ARM A9/A35,R7,Intel Atom ARM A53/A72,Core,XeonQuark MCU Quark SoC Atom Core, Xeon

Target systems

Reference hardware for common software platform:

 Start from working the common HW platform (PC)

 Later extend it to smaller/low power devices.

1 41) Typical configurations Q1/2016

Relationship between CIP and other projects

9

Civil Infrastructure Platform

Collaborative
Projects

(e.g. RTL, Yocto, CII)

Existing
project / distro

New CIP
sub-project

Developers

CIP FTE’s
Developers from

member companies

Budget

Member companies
…

Existing project

CIP

source code

repositories

Open source projects (Upstream work)

contribution
Optional: funding of

selected projects

CIP will do not only
development for CIP
but also fund or
contribute to related
upstream projects

Existing projects
(unchanged)

Open source projects

CIP Super Long
Term Support

Project

• Import source code from
open source project or
existing distribution to CIP

• Backport patches from
upstream to CIP version

Upstream first policy for implementation of new features

All delta from mainline should be treated as technical debt.
• No parallel source trees, directly discuss features in upstream projects.

• Upstream first implementation. Take this to declared stable.

• Then back-port to long-term support versions drive by CIP employee or
CIP members.

10

Upstream
Project 1

Upstream
Project 2

Project 1
(S)LTS versions

Project 2
(S)LTS versions

new features

new features

backport

new features

CIP members / CIP FTEs CIP members / CIP FTEs

…

Super Long Term Support - Motivation

11

Upstream

Kernel tree

Long-term support（LTS）

Backports bug fixes for 2 years

Long-term support

Initiative（LTSI）

Add extra functionality on LTS for

embedded systems and support it

for 2 years

About 3 months

Approx. 2-5 years

Approx. 2-5 years

K
e

rn
e

l.
o

rg
C

E
W

G

Every company,

every project

10 years – 15 years

Backport of bug fixes and

hardware support: the same work

is done multiple times for different

versions.

Release / Maintenance release

CIP kernel super long term support (SLTS) overview

12

Long-term support（LTS）

Backports bug fixes for 2 years

Long-term support

Initiative（LTSI）

Add extra functionality on LTS for

embedded systems and support it

for 2 years

CIP super long-term

supported kernel

Approx. 3 months

Approx. 2-5 years

Approx. 2-5 years

Goal: 10 years – 15 years

Need to be maintained
more than 10 years

K
e

rn
e

l.
o

rg
C

E
W

G
C

I
P

Approx. every 3 years

Release / Maintenance release After 5 years merge window for new
features will be closed, CIP kernel changes

focus to security fixes.

Backports, e.g. for SoC support
reviewed by CIP

Upstream

Kernel tree

Package categorization

13

CIP development
packages

CIP core
packages

S
u

p
e
r

L
o
n

g
-t

e
rm

 s
u

p
p
o
rt

M
a
in

ta
in

 f
o
r

R
e
p
ro

d
u

c
ib

le
 b

u
il
d

CIP Linux
Kernel

• Linux kernel itself which CIP will maintain
• CIP will provide super long-term support for this

category

• The "development packages" provide a reproducible
environment for building the CIP kernel and related
packages

• This category should include all build dependencies,
debug tools and test tools for CIP kernel and CIP core
components

• This category might not require to have security fixes

• CIP will provide super long-term support for this
category

Hardware (Development board / QEMU)

Candidates for Super Long-term Maintenance

• Flex

• Bison

• autoconf

• automake

• bc

• bison

• Bzip2

• Curl

• Db

• Dbus

• Expat

• Flex

• gawk

• Gdb

• Kernel
• Linux kernel (cooperation with LTSI)
• PREEMPT_RT patch

• Bootloader
• U-boot

• Shells / Utilities
• Busybox

• Base libraries
• Glibc

• Tool Chain
• Binutils
• GCC

• Security
• Openssl
• Openssh

14

• Git

• Glib

• Gmp

• Gzip

• gettext

• Kbd

• Libibverbs

• Libtool

• Libxml2

• Mpclib

• Mpfr4

• Ncurses

• Make

• M4

• pax-utils

• Pciutils

• Perl

• pkg-config

• Popt

• Procps

• Quilt

• Readline

• sysfsutils

• Tar

• Unifdef

• Zlib

An Example minimal set of “CIP kernel” and “CIP core” packages for initial scope

NOTE: The maintenance effort varies considerably for different packages.

Core
Packages

(SLTS)

Kernel
(SLTS)

Dev
packages

Super Long-term support Maintain for Reproducible build

Development plan

CIP will increase development effort to create industrial grade commin base-layer

15

Phase 1:
• Define supported kernel

subsystems, arch.
• Initial SLTS component

selection
• Select SLTS versions
• Set-up maintenance

infrastructure (build, test)

Phase 2:
• Patch collection, stabilization,

back port of patches for CIP
kernel packages

• Support more subsystems
• Additional core packages

Phase 3:
• Domain specific

enhancements,
e.g. communication protocols,
industrial IoT middleware

• Optionally: more subystems
• Optionally: more core

packages

Core
Packages

Kernel
(SLTS)

add. pkgs

Core
Packages

Kernel
(SLTS)

add. pkgs

Core
Packages

Kernel
(SLTS)

• 2016:
• Project launch announcement at Embedded Linux Conference 2016
• Requirements defined, base use cases defined, technical & non-

technical processes established (license clearing, long-term
support), maintenance plan

• Common software stack defined, related core projects agreed (e.g.
PREEMT_RT, Xenomai), maintenance infrastructure set up

• Domain specific extensions defined, tool chain defined, test
strategy defined

• Maintenance operational and running

• 2017:
• Realization phase of selected components

• 2018:
• Advancement, improvements, new features

16

Milestones

• Civil infrastructure systems are currently built from the ground up, with little re-use of
existing software building blocks. However, existing software platforms are not yet
industrial grade (in addressing safety, reliability, security and other requirements for
infrastructure). At the same time, rapid advances in machine-to-machine connectivity
are driving change in industrial system architectures.

• The Linux Foundation proposes the creation of the Civil Infrastructure Platform (“CIP”)
as a Linux Foundation Collaborative Project. The Civil Infrastructure Platform will
establish an open source “base layer” of industrial grade software to enable the use
and implementation in infrastructure projects of software building blocks that meet the
safety, reliability, security and other requirements of industrial and civil infrastructure.

• Initial focus will be on establishing a long term maintenance infrastructure for selected
Open Source components, funded by participating membership fees.

• Mid-term focus will be extended to filling gaps commonly agreed addressing civil
infrastructure systems’ requirements.

• The Civil Infrastructure Platform shall be hosted by the Linux Foundation as an internal
Linux Foundation project, leveraging the resources and infrastructure of the Linux
Foundation, including the Linux Foundation’s relationships with other open source
projects.

17

Civil Infrastructure Platform: Executive Summary

Contact Information and Resources

To get the latest information, please contact:
• Urs Gleim urs.gleim@siemens.com

• Yoshitake Kobayashi yoshitake.kobayashi@toshiba.co.jp

Other resources
• CIP Web site https://www.cip-project.org

• CIP Mailing list cip-dev@lists.cip-project.org

18

mailto:urs.gleim@siemens.com
mailto:yoshitake.kobayashi@toshiba.co.jp
https://www.cip-project.org/
mailto:cip-dev@lists.cip-project.org

Questions?

Thank you!

21

Backup: Topics and related projects (subject to change)

To be specified / implemented by CIP Integration / cooperationLegend

w

Linux Kernel

Userland Isolation

LXC Cgroups

Heterogeneous

Computing

SoC FPGA

Middleware / Tools

Application support

App Framework HMI Framework FW update App deployment

Configuration/Device management

Configuration Industrial Zeroconf

Domain specific communication

ZigBee Avnu Echonet

Industrial special-purpose protocols

Functional Safety

SIL3 supportSIL2LinuxMP

Monitoring/error detection

RTOS

IoT communication stacks

AllJoyn IoTivity OM2M

Security

LSM

Anomaly detection

SELinux

Kernel Isolation

Communication

Jailhouse

SafeG

Real-time support

PREEMPT-RT

GPGPU/FPGA real-time

Xenomai

RT/non-RT communication

Live patching

Monitoring / Tracing

RAS

Ftrace ktap

Coherent Security Mechanisms

Hardware / SoC (x86 or ARM based)

`I

Testing

kselftest

CIP test suite

LTSI testLTP

Infrastructure and Services

Support

SLTS

Development process

SIL3 supportSIL2 support

Legal topics SPDX

Export ControlLicense Clearing

FOSSology

Backwards compatibility

Build and production

Yocto Project

