KVM, OpenStack, and the Open Cloud

Adam Jollans, IBM & Mike Kadera, Intel
LinuxCon North America – August 2015
Agenda

- A Brief History of Virtualization
- KVM Architecture
- OpenStack Architecture
- KVM and OpenStack
- Case Studies
 - NTT Com
 - CERN
 - Intel IT
- Additional Resources
A Brief History of Virtualization

- Virtualization on Unix systems
- Virtualization on mainframes
- 1960s
- 1980s
- 1990s
- 2000s
- 2010s
- 2015
- LXC / Docker
- KVM hypervisor
- x86 hardware virtualization
- Xen hypervisor for x86
- VMware hypervisor for x86
Conceptual Framework

User Interface

Management Tools

Applications

Storage

Compute

Networking

17Aug15
Introduction to KVM

- User Interface
 - oVirt
 - Kimchi
 - libvirt

- Management Tools
 - KVM

- Applications
 - Compute
 - Networking

- Storage
KVM Architecture

Open source hypervisor based on Linux

KVM
- Kernel module that turns Linux into a Virtual Machine Monitor
- Merged into the Linux kernel

QEMU
- Emulator used for I/O device virtualization

Processors supported
- x86 with virtualization extensions
 - Intel VT-x
 - AMD (AMD-V)
- POWER8
- IBM z Systems
- ARM64
KVM Performance

SPECvirt_sc2013

VMWare (ESX 5.1), Intel Xeon E5 - 16 cores (HP)
KVM (RHEL 6.2), Intel Xeon E5 - 32 cores (HP)
KVM (RHEL 6.4), Intel Xeon E5 - 16 cores (IBM)
KVM (RHEL 6.4), Intel Xeon E5 - 24 cores (IBM)
KVM (RHEL 6.4), Intel Xeon E5 - 24 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E5 - 60 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E5 - 60 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E7 - 120 cores (Lenovo)
KVM (RHEL 6.6), Intel Xeon E7 - 72 cores (Lenovo)
KVM (RHEL 7), Intel Xeon E5 - 36 cores (HP)
KVM (RHEL 7.1), Intel Xeon E7 - 72 cores (HP)
KVM (Huawei FusionSphere), Intel Xeon E5 - 16 cores (HP)
KVM (Huawei FusionSphere), Intel Xeon E5 - 36 cores (Huawei)
KVM (Huawei FusionSphere), Intel Xeon E7 - 60 cores (Huawei)
PowerVM (IBM), IBM POWER8 - 24 cores (IBM)

17Aug15
Open Virtualization Alliance
KVM Security

SELinux
- Mandatory Access Control (MAC) integrated into Linux
- Provides “need to know” security between processes

sVirt
- Combines SELinux and KVM
- Delivers “need to know” security between virtual machines

Certifications
- EAL4+ certification for KVM in RHEL 6 and SLES 11 SP 2 on various x86 64-bit Intel and AMD64-based hardware from Dell, HP, IBM and SGI
KVM Management - libvirt

User Interface

Library
- Open Source project
- Manages multiple hypervisors

Command Line
- Powerful
- Complex to use

Network Daemon
- Enables remote management

Base for other management tools
- virt-manager, Kimchi, oVirt
- OpenStack

libvirt

KVM
Xen
LXC
...
Compute
KVM Management - Kimchi

Kimchi
• Open Source project
• Manages KVM on x86, Power

User Interface
• Easy to use
• Access from HTML5 web browser

Servers managed
• Single digits
KVM Futures

• Heterogeneous processor support
 – ARM
 – POWER
 – System z
 – GPUs
• Network Function Virtualization
• Additional Performance Improvements
 – Minimizing locks
 – Multi-threaded device model
• Nested Virtualization
• Containers with Virtualization
Building Open Clouds

• Security
• Resilience
• Performance
• Scalability – thousands of nodes
• Heterogeneity
• Interoperability
Introduction to OpenStack

OpenStack

User Interface

Horizon

Command Line

Applications

Heat

Sahara

Trove

Management Tools

Ceilometer

Swift

Glance

Keystone

Nova

Neutron

Trove

Choice of storage

Storage

Choice of hypervisor

Compute

Choice of network

Networking

Choice of storage

Choice of hypervisor

Choice of network
OpenStack Design Principles

• Open
 – Open Development Model
 – Open Design Process
 – Open Community

• General Purpose
 – Balancing Compute, Storage, Network

• Massively Scalable

• Multi-site

• Resilient and recoverable
Nova – Compute Service

Manages VM lifecycle
- Starting and stopping VMs
- Scheduling and monitoring VMs

Key Components
- API
- Database
- Scheduler
- Compute node and plug-ins

Authentication
- Keystone

Access to VM images
- Glance
- Swift
OpenStack and Hypervisor Usage

17Aug15 Open Virtualization Alliance 16
Keystone – Authentication Service

Manages security
• Service for all other modules
• Authentication
• Authorization

Key components
• API
• Backends
 • Token
 • Catalog
 • Policy
 • Identity
Cinder – Block Storage Service

Manages persistent block storage
- Provides volumes to running instances
- Pluggable driver architecture
- High Availability

Key components
- API
- Queue
- Database
- Scheduler
- Storage plug-ins

Authentication
- Keystone

17Aug15
Neutron – Networking Service

Manages networking connectivity
- Provides volumes to running instances
- Pluggable driver architecture
- Support for range of networking technologies

Key components
- API
- Queue
- Database
- Scheduler
- Agent
- Networking plug-ins

Authentication
- Keystone
Glance – Image Service

Manages VM images
- Catalog of images
- Search and registration
- Fetch and delivery

Key components
- API
- Registry
- Database

Authentication
- Keystone

Storage of VM images
- Swift
- Local file system
Swift – Object Storage Service

- Manages unstructured object storage
 - Highly scalable
 - Durable – three times replication
 - Distributed

- Key components
 - Proxy / API
 - Rings
 - Accounts
 - Containers
 - Objects
 - Data stores

- Authentication
 - Keystone

17Aug15
Provisioning a VM

User Interface
- Horizon

Command Line

Management Tools
- Cinder
- Swift
- Glance
- Nova
- Keystone

Applications

Storage
- Compute
- Networking

Open Virtualization Alliance

17Aug15
OpenStack New Features – Kilo

• Horizon
 – Updated user interface

• Glance
 – Additional artifacts beyond just images

• Ironic
 – Bare Metal Provisioning

• Zaqar
 – Messaging and Queuing System
KVM and OpenStack

• KVM excels at choice criteria for Hypervisor
 – Cost
 – Scale & Performance
 – Security
 – Interoperability

• Development Affinity
 – Both open source projects
 – KVM is default hypervisor for OpenStack development

• Deployment Affinity
 – KVM is best supported, easiest to deploy, with most full-featured driver
NTT Com’s OpenStack Deployment

• NTT Com
 – Leading global carrier headquartered in Japan
 – Early adopter of both KVM and OpenStack
 – Basing one of its public cloud offerings on OpenStack and KVM

• NTT involvement
 – Actively involved with the OpenStack and KVM communities
 – Continues to contribute to the development of both projects, with an emphasis on the cloud service provider use case

• Use of OpenStack
 – Flexible plug-in infrastructure used as a unified orchestrator of both computing and networking resources
 – Integrate software-defined-networking (SDN)-powered enterprise VPN service, allowing customers to create virtual datacenters that can span two or more physical ones
 – GUI portal for its cloud services using OpenStack native APIs, letting customers provision and manage virtual machines, networks, and storage without having to know the OpenStack APIs

Source: IDC white paper – “KVM – Open Source Virtualization for the Enterprise and OpenStack Clouds” on OVA website
CERN Private Cloud

• CERN
 – Fundamental research into particle physics
 – Large Hadron Collider seeking to find new particles
 – Massive need for scalable computing resource on demand

• CERN Private Cloud
 – Production since July 2013 with OpenStack using KVM, MySQL and RabbitMQ
 – Currently 3,200 hypervisors with 83,000 cores
 – Expected to reach over 100,000 cores by 2Q 2015

• Key Requirements
 – Scale
 – Technology and Developer ecosystem
 – Interaction with existing IT services

Source: CERN OpenStack public reference on www.openstack.org
Intel IT’s Cloud Goals

80% Effective Utilization
Efficiency through federation

- Pervasive virtualization (> 75%)
 - > 90% new land in cloud
 - Enterprise app virtualization
 - Secure virtualization
- Larger pools in fewer data centers

Velocity Increase
Agility through automation & self service

- On-demand self-service the norm
- Provision VMs within minutes
- Innovative idea to production < day
- External cloud for burst demand

Zero Business Impact

- Reduce MTTR
- App design for failure
- Increase availability
Intel IT & OpenStack*/KVM

Deployment History

Initial Deployment – 2012
- OpenStack Essex
- ~1000 virtual instances for external services
- qemu-system-x86_64 1.0

Today
- OpenStack Havana (Juno upgrade soon)
- ~4000 instances for multiple services (~70:1, ~100 vCPU)
- qemu-system-x86_64 1.4.2
KVM Benefits

Performance
- 2012 Study on ‘standard’ cloud workloads (database)
 - Par or better vs. marketplace
 - HV realm is seemingly near-stable on straight performance

Stability
- Open Source, tight OpenStack and Linux kernel integration
- Hypervisor efficiency
- Drinking our own champagne - we’ve got a few KVM devs :-)

KVM Lessons Learned

Performance
- Check flags – lots of features/options
- Windows guest updates
- Keep your images current

Stability
- Oversubscribing & big multi-vCPU instances
- Windows guest can be sensitive IO interruptions
- Its not good enough to have a cloud environment, applications need to evolve to become more cloud aware
OpenStack* intelligent workload scheduling

OpenStack* VMs have a greater awareness of the capabilities of the hardware platforms

FILTERS
- Capabilities
- Location
- Power & Thermals
- Security

HOST SERVERS
OpenStack* intelligent workload scheduling

Intelligent VM placement based on monitoring of resource utilization

FILTERS
- Security
- Power & Thermals
- Location
- Capabilities

WEIGHTING
- Performance
- Utilization

SELECTED NODE

HOST SERVERS

17Aug15
Open Virtualization Alliance
OpenStack* intelligent workload scheduling

OpenStack* VMs have a greater awareness of the capabilities of the hardware platforms

Intelligent VM scheduling based on monitoring of resource utilization, power and thermals
Easy to implement

1. Create a generic flavor named m1.avx
 – The grammar is: `nova flavor-create <name> <flavor ID> <ram in MB> <disk in GB> <number of vCPU>`
 – The word “auto” for the flavor ID will auto-generate the ID

   ```
   $ nova flavor-create m1.avx auto 1024 10 1
   ```

2. Add the extra properties to the flavor we created
 – The grammar is: `nova flavor-key <name> set <key>=<value>`
 – The value “<in> avx” means avx should be included in the host CPU features
 – Use the command `nova flavor-list` to look up flavor keys

   ```
   $ nova flavor-key <id of flavor> set capabilities:cpu_info:features="<in> avx"
   ```
Intel & OpenStack/KVM

Future Direction

IT

– It’s not just the hypervisor... it’s how they are managed within the stack
– Choice in managing the cloud
 • OpenStack enabled Single Control Plane to simplify hosting multiple hypervisor environments

Intel in the community

– Expose optimized hardware features to KVM and OpenStack schedulers
– EG: Cache QoS monitoring, chipset features (AVX2, Intel® AES-NI, etc.), VMCS Shadowing, APIC virtualization
Clear Linux Project
For Intel® Architecture

LAUNCH A SECURED CONTAINER WITHIN MULTI-TENANT ENVIRONMENTS IN UNDER 150 MILLISECONDS

WITH MEMORY OVERHEAD OF 18-20 MEGABYTES (PER EACH INCREMENTAL CONTAINER)

RUN 3,500+ CONTAINERIZED APPS ON A SERVER USING JUST 128 GB OF RAM

Security & isolation of traditional VMs + Deployment speed of containerized apps + Works with Docker images

17Aug15
Open Virtualization Alliance

Attend the Clear Linux session Tuesday 11:30 AM and see it in action at our booth (#321)
Additional Resources

- Open Virtualization Alliance
 - https://openvirtualizationalliance.org
- IDC White Paper
 - “KVM – Open Source Virtualization for the Enterprise and Open Stack Clouds”
- Linux Foundation Training Course
 - LFS540 – “Linux KVM Virtualization”
- KVM Forum – August 19-21
 - http://events.linuxfoundation.org/events/kvm-forum
- OpenStack Foundation
 - http://www.openstack.org
- OpenStack Nova Filter Scheduler
 - http://docs.openstack.org/driver/nova/devref/filter_scheduler.html