
Open-Channel Solid State Drives

Matias Bjørling

2015/03/12

Vault

1



Solid State Drives

• Thousand of IOPS and low latency (<1ms)

• Hardware continues to improve
– Parallel architecture

– Larger flash chips

• Replaceable for
traditional harddrives

• Embedded software 
maintains complexity

2



Embedded FTLs: No Future

• Dealing with flash chip constraints is a necessity
– No way around some form of FTL

• Embedded FTLs were great to guarantee 
adoption, but have critical limitations:
– Hardwire design decisions about data placement, 

overprovisioning, scheduling, garbage collection and 
wear leveling

– Based on more or less explicit assumptions about the 
application workload

– Resulting in redundancies, missed optimizations and 
underutilization of resources

3



Market Specific FTLs

• SSDs on the market with embedded FTLs 
targeted at specific workloads (90% reads) or 
applications (SQL Server, KV store)

• FTL is no longer in the way of a given 
application

• What if the workload or application changes?

• What about the other workloads or 
applications?

4



Open-Channel SSDs

5

Host
• Data placement
• IO Scheduling
• Over-provisioning
• Garbage collection
• Wear levelling

Physical flash exposed to the 
host (Read, write, erase)



Where are Open-Channel SSDs useful?

• Data centers with multi-tenancy environments

• Software-defined SSDs

– Managed storage centrally across open-channel
SSDs.

– NAND flash shared at fine-granularity

• Applications that have specific needs can be 
serviced by a FTL tailored to their needs 
(Application-driven FTLs).

6



New Logical Abstractions

• How is flash exposed to the host?
– Traditional Flash Translation Layer

• Both metadata and data are managed by the host

– New interfaces
• LUNs (The parallel unit of SSDs)
• Key-value database (e.g. LevelDB and RocksDB)
• Object-store (OSSD)
• Application-driven (New research area)
• File-system (NVMFS)
• Hybrid FTL (Traditional FTL is expensive, offload metadata 

consistency to device)

– Manage multiple devices under a single address space
• Including garbage collection (Global FTL)

7



What should the host know?

• SSD Geometry

– NAND idiosyncrasies

– Die geometry (Blocks & Pages)

– Channels, Timings, Etc.

– Bad blocks

– Error-Correcting Codes (ECC)

• Features and Responsbilities

8



Kernel Integration

• Generic core features for flash-based SSD 
management such as:

– List of free and in-use blocks, handling of flash 
characteristics, and global state.

• Targets that expose a logical address space, 
possibly tailored for the needs of a class of 
applications (e.g., key-value stores or file 
systems)

9



Architecture

10

File-systems

Null device

Key-Value Target

VFS

Open-Channel SSD Integration

Open-Channel SSDs

NVMe PCIe-based SATA/SAS

Kernel

User-space

Page Target

Block Layer



Responsibilities

11



Hybrid Target

• Host-side Translation table and reverse 
mapping table (for GC) in host

• Device maintains metadata consistency
– Offloads metadata overhead at the cost of disk 

also maintaining translation table

• Sequential mapping of pages within a block

• Cost-based garbage collection

• Inflight tracking
– Guarantee atomicity of writes

12



Hybrid Target per Request
Component Description Native Latency(us) LightNVM Latency(us)

Read Write Read Write

Kernel and fio 
overhead

Submission and completion 1.18 1.21 1.34 (+0.16) 1.44 (+0.23)

Completion 
time for devices

High-performance SSD 10us (2%)

Null NVMe hardware device 35us (0.07%)

Common SSD 100us (0.002%)

13

Low overhead compared to hardware overhead
0.16us on reads and 0.23us on writes

System: i7-3960K, 32GB 1600Mhz – 4K IOs



Key-value Target

Metric Native LightNVM
-Page

LightNVM
Key-value

Throughput 29GB/s 28.1GB/s 44.7GB/s

Latency 32.04μs 33.02μs 21.20μs

Kernel Time 66.03% 67.20% 50.01%

14

Kernel time overhead 30% serving 1MB writes. 
Opportunities for application-driven FTLs 

0

10

20

30

40

50

Throughput

Throughput (GB/s)

Native LightNVM-Page LightNVM Key-value

1 MB Writes



Industry Vendors

• MemBlaze
– Available hardware

• PMC Sierra
– Builds support in user-space

• IIT Madras
– Builds HW using RapidIO SRIO

• Stealth startups and others
– Storage Arrays

– Applications

15



Source Layout

• Open-channel SSD initialization

– /block/blk-nvm.c – Initialization/Registration

– /include/linux/blkdev.h – Common NVM 
structures

• Targets

– /drivers/nvm

• Round-robin page-based with cost-based GC FTL (rrpc)

16



Open-channel SSD initialization

• Device drivers register the block device as an 
Open-channel SSD device
– Device is queried for geometry and configured

• blk_nvm_register(struct request_request *, 
struct blk_nvm_ops *)

• struct blk_nvm_ops
– identify

– get_features

– set responsibility

– get l2p

– erase_block

17



Block Layer Structures
/includes/linux/blkdev.h

• struct nvm_dev (1 per device)

– Describes the characteristics of the device

• struct nvm_lun (N per device, 8-16)

– Information about luns and status of flash blocks

• struct nvm_block (M per device, 1024+)

– Information about each flash block state

18



Target Interface

• Uses the interface provided by the block layer

– blk_nvm_get_blk(struct nvm_lun *)

– blk_nvm_put_blk(struct nvm_block *)

• Target reserves flash blocks and writes data

• Reads can either be resolved by device or 
physical LBAs

• Implements target_type interface

– make_request, prep_rq/unprep_rq, init/exit

19



RRPC Flow

20

Read IO from /dev/
nvm0

submit_bio

1. Direct to /dev/
nvme0n1

2. Setup target 
context

submit_bio
blk_mq/

sq_make_request

prep_rq

1. Lock logical address
2. Lookup LBA to PBA
3. Setup physical 
addresses in request

queue_rq
blk_mq_end_request

unprep_rq

1. Unlock logical 
address

bio complete

Target RRPC



Future

• Integrate with
– Ceph

– RocksDB

– Percona

– Openstack

– And many others

• Kernel upstream

• Finalize interface specification together with 
vendors

21
https://github.com/OpenChannelSSD

https://github.com/OpenChannelSSD


Thanks for Listening

22

https://github.com/OpenChannelSSD

https://github.com/OpenChannelSSD

