
Ceph and Flash

Allen Samuels, Engineering Fellow
October 4, 2016

©2016 Western Digital Corporation or affiliates. All rights reserved. Confidential.

Forward-Looking Statements
During our meeting today we may make forward-looking statements.

Any statement that refers to expectations, projections or other characterizations of future events or circumstances is a forward-
looking statement, including those relating to market position, market growth, product sales, industry trends, supply chain, future
memory technology, production capacity, production costs, technology transitions and future products. This presentation contains
information from third parties, which reflect their projections as of the
date of issuance.

Actual results may differ materially from those expressed in these forward-looking statements due to factors
detailed under the caption “Risk Factors” and elsewhere in the documents we file from time to time with the SEC, including our annual
and quarterly reports.

We undertake no obligation to update these forward-looking statements, which speak only as of the date hereof.

Semantics

Conceptual Ceph System Model

Gateway

OSD

Media

OSD

Media

OSD

Media

OSD

Media

…

…

Gateway Gateway

Client/gateway-specific
Block, File, Object, HDFS, etc.

RADOS

Raw Storage

Terminology

•Gateway – implements client protocol using RADOS

–LibRBD, KRBD, RGW, CephFS, etc.

•RADOS – cluster-wide storage protocol

–Transactional, Durable and Available storage

•OSD – Object Storage Daemon

–Raw object storage for RADOS

–Limited durability and availability

Inside the OSD

ObjectStore

FileStore

Client/Gateway Operations
Peer-to-Peer Cluster

Management

Network Interface

Write Ahead Log

XFS KeyValueDB

OSD

Ceph Flash Deployment Options

•Ceph Journal on Flash

•Ceph Metadata on Flash

•All Flash

Ceph Journal on Flash

•Journal consumes only a tiny fraction of one SSD

–Constrained by spills to HDD through XFS

• Average SSD BW is much less than 100 MB/Sec

• Space consumption is much less than < 10GB

•Typical usage aggregates multiple OSDs / SSD

–Partitioning of SSD is straightforward

–New failure domain affects durability

–Resource planning is simple

SSD Provisioning/Selection

•Multiplexing OSDs means random writes for SSD

–Journal write size is 4K + RADOS transaction size

–Overall rate still limited by background destage to HDD

•Right-size the SSD logs

–~1 minute of max throughput is only 6-8GB

–Small log wraparound is implicit “trim”

–SSD Garbage collection is minimized

•Should see best-case endurance for SSD

–Minimal write amplification due to garbage collection

Ceph Metadata on Flash

•Not much value for RBD

–Ceph xattrs generally stored in inode

•Will improve Object (S3/Swift) throughput

–But still have XFS metadata on HDD

–Difficult to estimate improvement

•Provisioning harder to estimate

–Bucket sharding can help with space allocation

Optimizing Ceph for the future

•With the vision of an all flash system, SanDisk engaged
with the Ceph community in 2013

•Self-limited to no wire or storage format changes

•Result: Jewel release is up to 15x vs. Dumpling

–Read IOPS are decent, Write IOPS still suffering

•Further improvements require breaking storage format
compatibility

What’s wrong with FileStore?

•Metadata split into two disjoint environments

–Ugly logging required to meet transactional semantics

•Posix directories are poor indexes for objects

•Missing virtual copy and merge semantics

–Virtual copies become actual copies

•BTRFS hope didn’t pan out
• Snapshot/rollback overhead too expensive for frequent use

• Transaction semantics aren’t crash proof

What’s wrong with FileStore?

•Bad Write amplification

–Write ahead logging for everything

– levelDB (LSM)

–Journal on Journal

•Bad jitter due to unpredictable file system flushing

–Binge/purge cycle is very difficult to ameliorate

•Bad CPU utilization

–syncfs is VERY expensive

BlueStore a rethink of ObjectStore

•Original implementation written by Sage late in ‘15

•Tech preview available in Jewel Release

•Preserves wire compatibility

•Storage Format incompatible

•Target Write performance 2x FileStore

•Target Read performance FileStore

BlueStore a rethink of ObjectStore

•Efficiently Support current and future HW types

–SCM, Flash, PMR and SMR hard drives, standalone or hybrid
combinations

•Improve performance

–Eliminate double write when unneeded

–Better CPU utilization through simplified structure and tailored
algorithms

•Much better code stability

BlueStore a rethink of ObjectStore

•Wire compatible but not data format compatible

–Mixed FileStore/Bluestore nodes in a cluster transparently
supported

–FileStore continues for legacy systems

–In place upgrade/conversion supported via rebuild

BlueStore Enhanced Functionality

•Checksum on all read operations

–SW defined data integrity

•Inline Compression

–Pluggable, Snappy and Zlib initially

•Virtual clone

–Efficient implementation of snapshots and clones

•Virtual move

–Enables RBD/CephFS to directly use erasure coded pools

BlueStore

ObjectStore

BlueStore

KeyValueDB

Data
MetaData

BlueFS

Operation Decoder

Journal

Client/Gateway Operations Peer-to-Peer Cluster
Management

Network Interface

BlueStore Architecture

•One, Two or Three raw block devices

–Data, Metadata/WAL and KV Journaling

–When combined no fixed partitioning is needed

•Use a single transactional KV store for all metadata

–Semantics are well matched to ObjectStore transactions

•Use raw block device for data storage

–Support Flash, PMR and SMR HDD

Two Write Path Options

•Direct Write

–(1) Write data to unused space (Copy-on-write style)

• Trivially crash-proof

–(2) Modify metadata through single KV transaction

• Transaction semantics of KV store shine here!

–(3) Send client completion signal

Two Write Path Options

•Write-ahead Log (WAL)

–(1) Commit data and metadata into single KV transaction

–(2) Send client completion signal

–<later>

–(3) Move data from KV into destination (Idempotent and
crash restartable)

–(4) Update KV to remove data and WAL operation

Basic Write pipeline

Prepare (Allocate)

Commit Metadata

Write Data

Send completion signal

Apply WAL

WAL completion/cleanup

OR

Prepare (Allocate)

Commit Metadata

Write Data

Send completion signal

Prepare (Allocate)

Commit Metadata

Send completion signal

Apply WAL

WAL completion/cleanup

BlueStore vs FileStore

1 800GB P3700 card (4 OSDs per), 64GB ram, 2 x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 1 x Intel 40GbE link
client fio processes and mon were on the same nodes as the OSDs.

KV Store Options

•RocksDB is a Facebook extension of levelDB

–Log Structured Merge (LSM) based

–Ideal when metadata is on HDD

–Merge is effectively host-based GC when run on flash

•ZetaScale™ from SanDisk® now open sourced

–B-tree based

–Ideal when metadata is on Flash

–Uses device-based GC for max performance

BlueStore ZetaScale v RocksDB Performance

0.436

1.005

3.970

0.95

2.83

9.29

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

0/100 70/30 100/0

I
O

P
s
 i
n

 K
s

Read/Write Ratio

Random Read/Write 4K IOPs per OSD

BlueStore(RocksDB)

BlueStore(ZetaScale)

Test Setup:
1 OSD, 8TB SAS SSD, 10GB ram, Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz , fio, 32 thds, 64 iodepth, 6TB dataset, 30 min

BlueStore Status

•Tech Preview in Jewel Release

–Unreliable, not format compatible with master

•Significant CPU/Memory optimizations in pipeline

–Better small block performance (oNode optimizations)

–SMR support in development (release date tbd)

•Target for release in Kraken, later this year

•Target as default in Luminous (next year)

