

Agenda

Jailhouse introduction & philosophy

IPC requirements and status quo

Inter-partition networking prototype

Demonstrations

What is Jailhouse?

A tool to run

- ... real-time and/or safety tasks
- ... on multicore platforms (AMP)
- ... aside Linux

It provides

- strong & clean isolation
- bare-metal-like performance & latencies
- no reason to modify Linux (well, almost)
- ... and it's open source (GPLv2)

What makes Jailhouse different?

- Use virtualization for isolation ok, nothing new
- Prefer simplicity over features
 - Resource access control instead of resource virtualization
 - 1:1 resource assignment instead of scheduling
 - Partition booted system instead of booting Linux
 - Do not hide existence of Jailhouse
- Offload work to Linux
 - System boot
 - Jailhouse and partition ("cell") loading & starting
 - Control and monitoring

Asymmetric Multiprocessing with Jailhouse

Hard Partitioning of Linux

Agenda

Jailhouse introduction & philosophy

IPC requirements and status quo

Inter-partition networking prototype

Demonstrations

Requirements on Inter-Partition Communication in Jailhouse

Local peer-to-peer channels

- Hardware independent, portable
- Focus on two cells, multicast not (yet) in scope

Minimal work for hypervisor

- Static setups, no dynamic reconfigurations
- Agnostic to communication protocols

Untrusted peers

- One side safety-related, the other not
- Both sides safety-related, but validating each other
- Secure isolation: one side hides secret from the other

Performance matters, but does not rule

- Try hard to be fast, low overhead
- But when in conflict, strict isolation and simplicity win

Adapting ivshmem

Inter-VM shared memory (ivshmem) device in QEMU

- Designed for shared memory based communication
- Works between applications inside VMs
- Multiple peers
- Doorbell interrupt
- Supports VMs on different hosts \rightarrow live migration
- Modeled as PCI device with 3 resources: shared memory, control registers, MSI registers

Jailhouse variant

- Shared r/w memory region of two cells at most
- Local only, no migration
- Only MSI-based doorbell (currently)
- Shared memory not relocatable via BAR

>1000 LOC

340 LOC

Alternative Inter-VM Communication Mechanisms

Classic virtio-based

- Well established in QEMU/KVM context and beyond
- Allows networks, consoles and even more
- Requires copying between VMs

vhost-user

- Replaces hypervisor with separate user-space process
- Does not resolve the access requirements

vhost-pci

- Proposal for NFV scenarios, aims at highest performance
- Builds on top of virtual IOMMUs to reduce copies
- Very complex because of IOMMU emulation

Alternative Inter-VM Communication Mechanisms (2)

Xen grant table

- Simpler than vhost-pci
- Requires runtime remappings for safe / secure operation

remoteproc / rpmsg

- virtio-derived, focusing AMP scenarios
- Assumes that co-processor can access whole host-processor address space
- Currently too asymmetric
- Pattern to copy: reuse virtio queues!

Agenda

Jailhouse introduction & philosophy

IPC requirements and status quo

Inter-partition networking prototype

Demonstrations

Enabling PCI-free Targets for ivshmem

How to bring ivshmem to ARM?

- Often, there is no physical PCI host bridge, thus no place to inject ivshmem virtual devices
- ivshmem as platform device?
- Or rather add a virtual PCI host bridge?


```
core: pci: Add virtual host controller
hypervisor/include/jailhouse/cell-config.h | 2 +-
hypervisor/pci.c
```

2 files changed, 5 insertions(+), 5 deletions(-)

Enabling PCI-free Targets for ivshmem (2)

How plug in the virtual PCI host bridge?

- Not yet available during boot-up, only after Jailhouse is enabled
 - → cannot be part of device tree
- Linux does not expect such bridges to be hot-plugged

What about those device tree overlays?

- Invented to address reconfigurable hardware like FPGAs, extension boards (for the Pi or BeagleBone)
- Support already in upstream well, almost...

What is missing?

- No overlay-aware DTC in upstream
 - → use Pantelis Antoniou's DTC branch
- No easy way of injecting DTB overlay blobs
 - → use Pantelis' configfs patch

ivshmem-net – Networking over shared memory

Build upon ivshmem support in Jailhouse

- Register on PCI device
- Use shared memory as transport

Reuse virtio

- Not the device layer
- ...but the queues: mature data structures and access protocols

Early prototype by Måns Rullgård is working

- linux/drivers/net/ivshmem-net.c: 470 line of code
- Round-trip latency: ~20 μs
- To optimize: too many interrupts under high load
- Life-cycle management lacking: what if one side restarts?
- Zero-copy RX?

Managing virtio Queue Access More Strictly

Virtqueue View

Window View

Agenda

Jailhouse introduction & philosophy

IPC requirements and status quo

Inter-partition networking prototype

Demonstrations

Live Demonstration

Jailhouse booting Linux

Agenda

Jailhouse introduction & philosophy

IPC requirements and status quo

Inter-partition networking prototype

Demonstrations

Summary

Jailhouse needs guest-to-guest communication

- Simpler (for the hypervisor) than usual
- Still fast enough to address common needs
- Strict separation mandatory

ivshmem-based networking prototype

- Reasonable but not yet optimal throughput
- Ongoing work to enable it also on ARM

Outlook

- Strict isolation via read/write / read-only split of shared memory
- Full life-cycle management, likely via some "ivshmem 2.0"

Any Questions?

Thank you!

https://github.com/siemens/jailhouse

Jan Kiszka <jan.kiszka@siemens.com>