
Enhancing the

Linux Radix Tree
MATTHEW WILCOX

LINUXCON NORTH AMERICA 2016-08-24

Enhancing the

Linux Radix Tree
MATTHEW WILCOX

LINUXCON NORTH AMERICA 2016-08-24

Overview

u What is a Radix Tree?

u What is it used for?

u Large entries in the Radix Tree

u Radix Tree Test Suite

u Other radix trees

u Radix Tree Memory Consumption

u RCU and the Radix Tree

What is a Radix Tree?

u Wikipedia says Radix Trees are all about strings

u Used for string compression and inverted indices of text documents

u Linux says Radix Trees are all about converting small integers to

pointers

u I think of it as a resizable array of pointers

u The Linux Radix Tree appears to be an independent reinvention of

the Judy Array

How does it work?

u Each layer of the Radix Tree contains 64 pointers

u The ònextó 6 bits of the index determine which pointer to use

u If this is the last level, the pointer is a user pointer

u If not the last level, the pointer points to the next layer

u Other tree metadata is also stored at each layer:

u Tags, height (shift), reference count, parent pointer, offset in parent

RCU and the Radix Tree

u With care, some radix tree functions can be used with only

rcu_read_lock protection

u Which (depending on kernel config options) may mean no protection

u Many CPUs may be walking the tree at the same time another CPU

is inserting or deleting an entry from the tree

u The user may get back a stale pointer from the tree walk, but it is

guaranteed to be a pointer which was in the tree for that index at

some point

u Radix Tree frees tree nodes using RCU, so any CPU holding the read

lock is guaranteed not to reference freed memory

Height 2 Radix Tree

UserS=0S=6Root

Node

Node
Node

Ptr

Ptr
NULL

Node Ptr

Node

NULL

How is it different from other trees?

u Tree points to objects

u RB trees embed an rb_node in data structures

u All data at leaves; no data in intermediate nodes

u Never needs to be rebalanced

u A tree of height N can contain any index between 0 and φτ-1

u If the new index is larger than the current max index, insert new nodes

above the current top node to create a deeper tree

u If deleting an element results in a top node with only one child at offset

0, replace the top node with its only child, creating a shallower tree

Removing an entry

UserS=0S=6Root

Node

Node

Node
Ptr

Ptr
NULL

Node Ptr

Node Node Ptr

NULL

Removing an entry

UserS=0S=6Root

Node

Node
Node

Ptr

Ptr
NULL

Node Ptr

NULL

NULL

Removing an entry

UserS=0Root

Node
Node

Ptr

Ptr
NULL

Node Ptr

What is it used for?

u Most important user is the page cache

u Every time we look up a page in a file, we consult the radix tree to see if

the page is already in the cache

u Also used by dozens of places in the kernel which want a resizable

array

u Drivers, filesystems, interrupt controllers

u More places should use it

u E.g. nvme driver

Tagged entries in the Radix Tree

u Primary user is the page cache

u Pages are tagged as dirty, under writeback, or to be written

u Radix tree can be searched for entries with any of the three bits set

u Tags are replicated all the way up to the root

u Setting a tag sets it on all parents

u Clearing a tag may clear it on a parent if all other entries are also clear

Large pages in the page cache

u Multiple indices return the same pointer

u E.g. indices 512 -1023 all refer to the same huge page

u Support aligned power -of -two size entries

u No need for entries which are not a power of two in size

u No need for entries which are not aligned to a multiple of their size

u Coalesce multiple small entries into a large entry

u Split a large entry into multiple small entries

Three solutions

1. Insert 512 4kB entries for each 2MB page

2. Search the tree once for 2MB pages, then again for 4kB pages

3. Modify the radix tree to support entries with an order > 0

Multi -order support

u Mark entries as being user pointers or internal nodes

u Concept already existed, just needed to be broadened

u If the fan -out of the radix tree happens to match the order of the

entry, simply insert the entry at the right place in the tree

u Otherwise need to refer from sibling slots to canonical slot

u Need to ensure tags are set/cleared only on canonical slot

Large entry

UserS=0S=6S=12Root

Node

Node Node

Node Page

Node
Page

Page

Node

Page

Sblg

Sblg

Sblg

