Application of Data Fusion to Aerial Robotics

Paul Riseborough
March 24, 2015
Outline

• Introduction to APM project
• What is data fusion and why do we use it?
• Where is data fusion used in APM?
• Development of EKF estimator for APM navigation
 – Problems and Solutions
• Future developments
• Questions
APM Overview

• Worlds largest open source UAV autopilot project
 – Over 100,000 users (consumer, hobbyist, education and commercial)

• Multi Vehicle
 – Fixed wing planes
 – multi rotors & traditional helicopters
 – ground rovers

• Multi Platform
 – Atmega 2560
 – ARM Cortex M4
 – Embedded Linux
Hardware Evolution

Flight Performance Evolution www.youtube.com/watch?v=XfvDwl4YVGk
What Is / Why Use Data Fusion

• In our context
 – Processing of data from multiple sources to estimate the internal states of the vehicle

• Data fusion enables use of multiple low cost sensors to achieve required performance and robustness
 – Faulty sensors can be detected using data consistency checks
 – Effect of uncorrelated sensor noise and errors is reduced
 – Complementary sensing modalities can be combined (inertial, vision, air pressure, magnetic, etc)

• The ‘Holy Grail’ is reliable and accurate estimation of vehicle states, all the time, everywhere and using low cost sensors
 – Still the weakest link in the chain for micro UAS
 – Failure can result in un-commanded flight path changes and loss of control
Data Fusion in APM

• Used to estimate the following:
 – Vehicle position, velocity & orientation
 – Wind speed & direction
 – Rate gyro and accelerometer offsets
 – Airspeed rate of change
 – Airspeed scale factor error
 – Height above ground
 – Magnetometer offset errors
 – Compass motor interference (developmental)
 – Battery condition (developmental)
Data Fusion in APM

- **Techniques:**
 - Complementary Filters
 - Computationally cheap – can run on 8bit micros
 - Used for inertial navigation on APM 2.x hardware
 - Used to combine air data and inertial data for plane speed and height control
 - Nonlinear Least Squares
 - Batch processing for sensor calibration
 - Extended Kalman Filters
 - Airspeed sensor calibration, 3-states
 - Flight vehicle navigation, 22-states, only runs on 32-bit micros
 - Camera mount stabilisation, 9 states, only runs on 32-bit micros
Development of an EKF Estimator for APM
What is an EKF?

- EKF = ‘Extended Kalman Filter’
- Enables internal states to be estimated from measurements for non-linear systems (the Kalman Filter or KF uses a linear system model)
- Assumes zero mean Gaussian errors in models and measured data

![Diagram of EKF process]

- IMU data
- Predict States
- Predict Covariance Matrix
- Update States
- Update Covariance Matrix
- Measurements
- Multiply ‘innovations’ by the ‘Kalman Gain’ to get state corrections
- Prediction
- Fusion
- variances
- covariances
EKF Processing Steps

- The EKF consists of the following stages:
 - Initialisation of States and Covariance Matrix
 - State Prediction
 - Covariance Prediction
 - Measurement Fusion which consists of
 - Calculation of innovations
 - Update of states using the product of innovations and ‘Kalman Gains’
 - Update of the ‘Covariance Matrix’
State Prediction

• Standard strap-down inertial navigation equations are used to calculate the change in orientation, velocity and position since the last update.
 – Uses Inertial Measurement Unit (IMU) data
 • Rate gyroscopes
 • Accelerometers
 – Local North East Down reference frame
 – IMU data is corrected for earth rotation, sensor bias and coning errors
 – Bias errors, scale factor errors and vibration effects are major error sources
 – Inertial solution is only useful for about 5 to 10 seconds without correction
 – In run bias drift for uncompensated gyros can be up to 5 deg/sec for large temperature swings!
What is the ‘Covariance Matrix’?

Defines the distribution of error for each state and the correlation in error between states.

Expected value

When errors in states are correlated, the covariances (off-diagonal elements) are non-zero.

When errors in states are uncorrelated, the covariances (off-diagonal elements) are zero.

state 1

state 2
Covariance Prediction

• The uncertainty in the states should always **grow** over time (until a measurement fusion occurs).

• The EKF linearises the system equations about the current state estimate when estimating the growth in uncertainty:

\[
P_k = F_{k-1} P_{k-1} F_{k-1}^T + G_{k-1} Q_{k-1} G_{k-1}^T + Q_σ
\]

- **Covariance Matrix**
- **Process noise due to IMU errors**
- **Additional process noise used to stabilise the filter**

\[
F_k = \left(\frac{\partial f}{\partial x} \right)_k
\]

\[
G_k = \left(\frac{\partial f}{\partial u} \right)_k
\]

- **State and control Jacobians**
What is the ‘Innovation’?

• Difference between a measurement predicted by the filter and what is measured by the sensor.
• Innovations are multiplied by the ‘Kalman Gain’ matrix to calculate corrections that are applied to the state vector.
• Ideally innovations should be zero mean with a Gaussian noise distribution (noise is rarely Gaussian).
• Presence of bias indicates missing states in model.
Innovation Example – GPS Velocities

Taken from a flight of Skyhunter 2m wingspan UAV running APMPlane on a Pixhawk flight computer and a u-blox LEA-6H GPS
Measurement Fusion

- Updates the state estimates and covariance matrix using measurements.
- The covariance will always **decrease** after measurements are fused provided new information is gained.

Kalman Gain:

\[
K = P_k^- H_k \left[H_k P_k^- H_k^T + R_k \right]^{-1}
\]

Innovation:

\[
\nu = z - z_p
\]

Covariance Update:

\[
P_k^+ = \left[I - KH_k \right] P_k^-
\]

State Update:

\[
x_k^+ = x_k^- + K \nu
\]
Navigation EKF Implementation

• 22 State Navigation EKF, where states are:
 – Angular position (Quaternions)
 – Velocity (NED)
 – Position (NED)
 – Wind (NE)
 – Gyro delta angle bias vector (XYZ)
 – Accelerometer bias (Z only)
 – Magnetometer bias errors (XYZ)
 – Earth magnetic field vector (NED)

• Single precision math throughout
• C++ library AP_NavEKF, containing 5200 SLOC
• With all optimisations enabled, uses 8% of 168MHz STM32 micro running at a 400Hz prediction rate

https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/
Sensing

• Dual IMU sensors (body angular rates and specific forces)
 – IMU data is used for state prediction only, it is not fused as an observation
• GPS (Lat/Lon/Alt and local earth frame velocity)
• 3-Axis magnetometer
• Barometric Altitude
• True Airspeed
• Range finder (range to ground)
• Optical flow sensor (optical and inertial sensor delta angles)
Problem 1: Processor Utilisation

• Significant emphasis on computational efficiency...
 – Limited processing: 168MHz STM32
 – Ardupilot is single threaded
 – 400Hz update rate
 – Try not to take more than 1250 micro sec for worst case (50% of total frame time)

• Implementation:
 – Matlab Symbolic Toolbox used to derive algebraic equations.
 – Symbolic objects are optimized and converted to C-code fragments using custom script files. Current process is clunky. Mathworks proprietary converters cannot handle problem size.
Efficient Algorithms

• Solutions: Covariance Prediction
 – Implemented as explicit algebraic equations (Matlab>>C)
 • Auto generated C++ code from Symbolic toolbox text output
 • 5x reduction in floating point operations over matrix math for the covariance prediction
 – Asynchronous runtime
 • Execution of covariance prediction step made conditional on time, angular movement and arrival of observation data.

• Solutions: Measurement Fusion
 – Sequential Fusion: For computationally expensive sensor fusion steps (eg magnetometer or optical flow), the X,Y,Z components can be fused sequentially, and if required, performed on consecutive 400Hz frames to level load
 – Adaptive scheduling of expensive fusion operations, based on importance and staleness of data can be used to level load.
 – Exploit sparseness in observation Jacobian to reduce cost of covariance update

• Problems
 – Stability: sequential fusion reduces filter stability margins >> care is taken to maintain positive variances (diagonals) and symmetry of covariance matrix
 – Jitter: Jitter associated with servicing sensor interrupts. Recent improvements to APM code have significantly reduced problems in this area
Problem 2: Bad Data

- Broad consumer/commercial adoption of Ardupilot = lots of corner cases
- Over 90% of development work is about ‘corner cases’ relating to bad sensor data including:
 - IMU gyro and accelerometer offsets
 - IMU aliasing due to platform vibration
 - GPS glitches and loss of lock
 - Barometer drift
 - Barometer disturbances due to aerodynamic effects (position error, ground effect, etc)
 - Magnetometer calibration errors and electrical interference
 - Range finder drop-outs and false readings
 - Optical flow dropouts and false readings
Solutions for Bad Data

- IMU bias estimation (XYZ gyro and Z accel)
 - XY accel bias is weakly observable for gentle flight profiles and is difficult to learn in the time frame required to be useful
- Innovation consistency checks on all measurements
- Rejection Timeouts
 - Dead reckoning only possible for up to 10s with our cheap sensors
 - GPS and baro data rejection has a timeout followed by a reset to sensor data
- GPS glitch recovery logic
 - Intelligent reset to match inertial sensors after large GPS glitch
- Aliasing Detection
 - If GPS vertical velocity and barometer innovations are same sign and both greater than 3-Sigma, aliasing is likely.
- Dual accelerometers combined with variable weighting
 - Weighting based on innovation consistency (lower innovation = higher weight)
 - Different sample rates (1000 and 800 Hz) reduce likelihood both will alias badly
Problem 3: Update Noise

• ‘Text Book’ implementation of an EKF produces steps in state estimates when observations are fused and states updated.
 – APM multirotor cascaded control loops are vulnerable to this type of noise due to use of cascaded PID controllers and lack of noise filtering on motor demands.

• Solved by applying state correction incrementally across time to next measurement
 – Reduces filter stability margins
Problem 4: Measurement Latency

- Observations (eg GPS) are delayed relative to inertial (IMU) data
 - Introduces errors and filter stability
- Potential Solutions
 1. Buffer state estimates and use stored state from measurement time horizon when calculating predicted measurement used for data fusion step.
 - Assumes covariance does not change much across internal from measurement time horizon to current time
 - Not good for observations in body frame that have significant delays
 - Computationally cheap and is method used by current APM EKF
 2. Buffer IMU data and run EKF behind real time with a moving fusion time horizon. Use buffered inertial data to predict the EKF solution forward to the current time horizon each time step
 - Too memory and computationally expensive for implementation on STM32
 3. Same as 2. but a simple observer structure is used to maintain a state estimate at the current time horizon, tracking the EKF estimate at the fusion time horizon
 - Recent theoretical work by Alireza Khosravian from ANU (Australian National University)
 - Robustness benefits of option 2, but computationally cheap enough to run on an STM32
 - Will be implemented in future APM
Optical Flow Fusion

- **Why?**
 - Outdoor landing and takeoff
 - Indoor station keeping
- Uses a PX4Flow smart camera
- Images and gyro rates sampled at 400Hz
- Shift between images converted to equivalent angular rate
 - Flow Rate = pixels_moved / delta_time * pixels_per_radian
- Gyro and flow rates accumulated as delta angles and used by the EKF at 10Hz
- **Observability**
 - If velocity is non-zero and known (e.g., GPS), height is observable
 - If height is known, velocity is observable

* Flow rate = Angular Rate + Velocity / Range
Optical Flow Design Challenges

• Accurate time alignment of gyro and flow measurements required
 – Misalignment causes coupling between body angular motion and LOS rates which destabilizes velocity control loop.
 – Effect of misalignment worsens with height

• Focal length uncertainty and lens distortion
 – Causes coupling between body angular motion and LOS rates which destabilizes velocity control loop.
 – Can vary 10% from manufacturers stated value
 – Sensors must allow for storage of calibration coefficients
 – Can be estimated in flight given time

• Assumption of flat level terrain

• Scale errors due to poor focus, contrast
 – Innovation consistency checks

• Moving background
Optical Flow On Arducopter

• Optical Flow Demo
 – www.youtube.com/watch?v=9kBg0jEmhzM
Lessons Learned

• Large efficiency gains using scalar operations on the STM32 micro compared to ‘brute-force’ matrix math
• Stability challenges due to use of single precision operations limit the number of states that can be used and require scaling of some states to reduce impact of precision loss.
• It’s all about the corner cases!
• 90% of code maintenance has been in the state machine and related data checks. These need to be separated from the core filter maths as much as is practical.
• A simple cost effective way of calibrating the MEMS sensors for thermal drift is required.
• Use of magnetometers is problematic in our application
 – Interference from electric power system
 – Widespread use of magnets to attach hatches in planes !!
 – Power-up can be anywhere - car roof, in the trunk next to large loudspeaker magnets
Where To Next?

 – Prototype in Ardupilot: 9-state gimbal estimator
 – Reduces computational load (3 vs 4 attitude states)
 – Reduces issues with linearization of quaternion parameters with large state uncertainty.
 – Enables bootstrap alignment from unknown initial orientation on moving platforms including gyro bias estimation

• Change measurement latency compensation to use method developed by A. Khosravian, et.al.
 – “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements”, A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
 – Will improve filter robustness and enable better fusion of delayed body frame measurements from optical sensors.
Where To Next?

• Learning of IMU offsets vs temperature
 – Offsets learned in flight could be combined with a data clustering algorithm to produce a temperature dependent calibration that learns across the life of the sensor.

• Tightly Coupled GPS fusion:
 – Use individual satellite pseudo range and range rate observations.
 – Better robustness to multi-path
 – Eliminate reliance on receiver motion filter
 – Requires double precision operations for observation models

• Move to a more flexible architecture that enables vehicle specific state models and arbitrary sensor combinations
 – Enables full advantage to be taken of multiple IMU units
 – Use of vehicle dynamic models extends period we can dead-reckon without GPS.
 – Requires good math library support (breaking news - we now have Eigen 3 support in PX4 Firmware!!)
Flexible Architecture State Estimator

• Common and platform/application specific states in separate regions in the state vector and covariance matrix
• Use of Eigen or equivalent matrix library to take advantage of sparseness and structure
• Generic observation models
 • Position
 • Velocity
 • Body relative LOS rate
 • Inertial LOS rate
 • Body relative LOS angle
 • Inertial LOS angle
 • Range
 • Delta Range
 • Delta Range Rate
 • Airspeed
 • Magnetometer
Questions?

paul@3drobotics.com
SUPPORTING SLIDES
DERIVATION OF FILTER EQUATIONS
% Define the state vector & number of states
stateVector =
[q0;q1;q2;q3;vn;ve;vd;pn;pe;pd;dax_b;day_b;daz_b;dvz_b;vwn;vwe;magN;magE;magD;magX;magY;magZ];
nStates=numel(stateVector);

% define the measured Delta angle and delta velocity vectors
da = [dax; day; daz];
dv = [dvx; dvy; dvz];

% define the delta angle and delta velocity bias errors
da_b = [dax_b; day_b; daz_b];
dv_b = [0; 0; dvz_b];

% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);

% define the bias corrected delta angles and velocities
dAngCor = da - da_b;
dVelCor = dv - dv_b;

% define the quaternion rotation vector
quat = [q0;q1;q2;q3];
% define the attitude update equations
delQuat = [1;
 0.5*dAngCor(1);
 0.5*dAngCor(2);
 0.5*dAngCor(3);
];
quNew = QuatMult(quat,delQuat);

% define the velocity update equations
vNew = [vn;ve;vd] + [gn;ge;gd]*dt + Tbn*dVelCor;

% define the position update equations
pNew = [pn;pe;pd] + [vn;ve;vd]*dt;

% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];
dvbNew = dvz_b;

% define the wind velocity update equations
vwnNew = vwn;
vweNew = vwe;
% define the earth magnetic field update equations
magNnew = magN;
magEnew = magE;
magDnew = magD;

% define the body magnetic field update equations
magXnew = magX;
magYnew = magY;
magZnew = magZ;

% Define the process equations output vector
processEqns =
[qNew;vNew;pNew;dabNew;dvbNew;vwnNew;vweNew;magNnew;magEnew;magDnew;magXnew;magYnew;
magZnew];
% define the measured Delta angle and delta velocity vectors
dAngMeas = [dax; day; daz];
dVelMeas = [dvx; dvy; dvz];

% define the delta angle bias errors
dAngBias = [dax_b; day_b; daz_b];

% define the quaternion rotation vector for the state estimate
estQuat = [q0;q1;q2;q3];

% define the attitude error rotation vector, where error = truth - estimate
errRotVec = [rotErr1;rotErr2;rotErr3];

% define the attitude error quaternion using a first order linearisation
errQuat = [1;0.5*errRotVec];

% Define the truth quaternion as the estimate + error
truthQuat = QuatMult(estQuat, errQuat);

% derive the truth body to nav direction cosine matrix
Tbn = Quat2Tbn(truthQuat);
% define the truth delta angle
% ignore coning acompenation as these effects are negligible in terms of
covariance growth for our application and grade of sensor
dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];

% Define the truth delta velocity
dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];

% define the attitude update equations
% use a first order expansion of rotation to calculate the quaternion increment
% acceptable for propagation of covariances
deltaQuat = [1;
 0.5*dAngTruth(1);
 0.5*dAngTruth(2);
 0.5*dAngTruth(3);
];
truthQuatNew = QuatMult(truthQuat,deltaQuat);

% calculate the updated attitude error quaternion with respect to the previous estimate
errQuatNew = QuatDivide(truthQuatNew,estQuat);
% change to a rotation vector - this is the error rotation vector updated state
errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];
% define the velocity update equations
% ignore coriolis terms for linearisation purposes
vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;

% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];

% Define the state vector & number of states
stateVector = [errRotVec;vn;ve;vd;dAngBias];
nStates=numel(stateVector);