
ñYou can keep your firewall (if you
want to)ò

Practical, simple and cost saving applications of OpenDaylight

you can implement today

John Sobanski, Engineer, Solers Inc.

July 2015

@OpenDaylightSDN #OpenSDN

What You Will Learn today (By Demonstration)

Å10,000 Foot Views of Software Defined Networking (SDN), OpenDaylight (ODL) and Service Function Chains
(SFC)

ÅSolve real world data center problems with ODL
ÅRESTCONF API

ÅODL Service Function Chaining

ÅFeel free to contact me for any details I don't cover here

jsobanski@solers.com

https://ask.opendaylight.org/users/420/runamuck/

2

mailto:jsobanski@solers.com
https://ask.opendaylight.org/users/420/runamuck/
https://ask.opendaylight.org/users/420/runamuck/
https://ask.opendaylight.org/users/420/runamuck/

Top three emerging technologies of the decade?

Åaȅ ǘŀƪŜΧ

Å Big Data

Å DevOps

Å Software Defined Networks

3

Any Others?

ñIs SDN Hype?ò

Åά.ƛƎ 5ŀǘŀ ŀƴŘ DevOps have clear applications and use cases but Software Defined Networks appears to be a
solution in search of a problemΦέ

Åάaƻǎǘ {5b ŀŎǘƛǾƛǘȅ ƛǎ ŦƻŎǳǎŜŘ ƛƴ !ŎŀŘŜƳƛŀ ƻǊ ŘŜŘƛŎŀǘŜŘ ΨbŜǘǿƻǊƪ CǳƴŎǘƛƻƴ ±ƛǊǘǳŀƭƛȊŀǘƛƻƴ όbC±ύΩ ǎƘƻǇǎΦΦΦ ƴƻǘ
ǊŜƭŜǾŀƴǘ ǘƻ ǳǎΦέ

Å"SDN/ NFV only applies to Greenfield Architectures."

4

These slides will prove these opinions wrong

ñWho cares about networks?ò

ÅAnswer: You Do! Network latency and/ or loss breaks services.

5

ñLatency and Loss doesnôt apply to my Data Centerò

Åά[ŀǘŜƴŎȅ ŀƴŘ [ƻǎǎΚ LϥǾŜ Ǝƻǘ ŘƻȊŜƴǎ ƻŦ млDō9 ǇƻǊǘǎΗΗΗέ

ÅLayer 2: Spanning tree protocol

ÅBlocks all but one path to prevent loops

Å (Enable LACP/ LAG)

ÅLayer 3: Shortest path first

ÅSends all traffic through a congested "one hop" path over a wide open "two hop" path

Å (Try Traffic Engineering)

ÅLayer 4: Default TCP buffers

ÅSmall buffers mean more round trips. Latency throttles throughput.

Å (Tune the buffer)

6

You need to care about the network!

What are Network Services?

ÅFamiliar Network Services
ÅLoad Balancing
ÅFirewall
ÅDeep Packet Inspection (DPI)
ÅAccess Control Lists
ÅParental Control

ÅOther Network Services
Å"Global State" (Routing)
ÅBroadcast Domain Scoping (VLAN)
ÅResource Signaling
ÅPrioritization and Preemption
ÅMulticast
ÅN-Cast

7

10,000 Foot Overview

Å10,000 Foot view of SDN

ÅAt any give time, use a centralized controller to move data through your network equipment as you see fit

ÅDoesn't seem like a big deal to non-network types but this is incredibly powerful!

Å10,000 Foot view of OpenDaylight

ÅAllows you to install network services as "Apps"

ÅProvides a single REST API to configure heterogeneous hardware

Å¢Ƙƛǎ ƛǎ ŀ άƴƻ ōǊŀƛƴŜǊέ ŦƻǊ ŘŜǾŜƭƻǇŜǊǎ ōǳǘ ƛǎ I¦D9 ŦƻǊ ƴŜǘǿƻǊƪ ŜƴƎƛƴŜŜǊǎ

Å10,000 Foot view of Service Function Chains

Åά{ŜǊǾƛŎŜ hǾŜǊƭŀȅέ

ÅDivorce Network Services From Topology

Å For more detail see:

Å https:// www.opennetworking.org/sdn-resources/sdn-definition

Å http:// www.opendaylight.org/project/technical-overview

Å https:// wiki.opendaylight.org/view/Service_Function_Chaining:Main 8

https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

A Little More Detail: SDN Layers

ÅTop Layer Ą Northbound

ÅNetwork Apps & Orchestration

ÅBusiness logic to monitor and control network behavior

ÅThread services together

ÅMiddle Layer Ą Controller Platform

ÅExposes "Northbound" APIs to the Application layer

ÅLower Layer Ą Southbound

ÅCommand and control of hardware

ÅNetwork Devices (Physical or Virtual)

ÅSwitches, Routers, Firewalls etc.

9

A Little More Detail: OpenDaylight

ÅOpenDaylight
ÅOpen source project

ÅModular/ Pluggable and flexible controller platform

Å Java Virtual Machine (JVM)
ÅDynamically Pluggable Modules for Network Tasks
ÅOSGi framework (local applications)/ bidirectional REST (local or remote) for the northbound API

ÅNetwork Apps

ÅHouse business logic and algorithms
ÅGather network intelligence from the controler
ÅRun algorithms to perform analytics
ÅOrchestrate new rules (if any) via controller

Å Southbound

ÅOpenFlow 1.3, OVSDB, SNMP, CLI

ÅService Abstraction Layer links Northbound to Southbound

10

A Little More Detail: ODL

11

A Little More Detail: SFC

Å{C/ ŜƴŀōƭŜǎ ŀ άǎŜǊǾƛŎŜ ǘƻǇƻƭƻƎȅέ

ÅhǾŜǊƭŀȅ ōǳƛƭǘ άƻƴ ǘƻǇέ ƻŦ ŜȄƛǎǘƛƴƎ ƴŜǘǿƻǊƪ ǘƻǇƻƭƻƎȅ

ÅUse any overlay or underlay technology to create service paths

ÅVLAN, ECMP, GRE, VXLAN, etc.

ÅSFC provides resources for consumption

ÅService Topology connects those resources

ÅQuickly/ Easily add new service functions

ÅRequires no underlying network changes

12

One Caveat Before we begin

ÅWARNING: Software Defined Networking is incredibly powerful!

ÅYou must protect your Southbound interfaces with the same regard as a firewall or any root privileges

ÅODL accommodates TLS for Southbound interfaces

ÅThe security, identity and bureaucratic planes are orthogonal to the technology plane we discuss here

ÅWe do not discuss security, identity or policy but you must consider them when architecting your ODL
solution

13

One more Caveat

ÅWARNING: If you are not a hands-on network engineer, this presentation may "spoil" you.

ÅTo provide the following two OPSCON using legacy protocols may be impossible and at the very least requires intense,
disciplined, meticulous network engineering.

14

DPI Bypass

Approach #1: RESTCONF API

15

OPSCON #1: Deep Packet Inspection Bypass

ÅThis scenario investigates how to reduce latency
ÅYou have a data center that performs deep packet inspection (DPI) for inter-network flows

Å DPI injects latency into the end to end (E2E) flow and increases Round Trip Time (RTT)

16

Reminder: Network latency and loss breaks services!

Topology

ÅNetwork gateways in Firewall/ DPI appliance

ÅVLAN steer (bent pipe) traffic through DPI (via gateways) for inter-network flows

ÅCan we create logic to DPI only once?

17

One Approach

ÅPut logic (i.e. rules) in the DPI appliance to bypass certain flows

ÅThis, however consumes resources and can saturate the backplane

18

Put logic here?

Better Approach

ÅUse the OpenDaylight controller and put logic in the switch!

19

Put logic here!

OPSCON #1 Detailed Topology

20

DPI Bypass Demo

Approach #1: RESTCONF API

Note: This section will be a live demonstration

21

Step 1: Start ODL Platform via Client

ÅPlatform includes controller

ÅInstall Network Apps via command line

22

Validate Topology

Å/ƻƴƴŜŎǘ ǘƻ ŎƻƴǘǊƻƭƭŜǊ ŀƴŘ άpingallέ

23

ODL Shows the Layer 2 Interfaces

24

Baseline: Two DPI = Severe Latency

ÅPing from Client (h1) to Server (h3) shows 40+ ms latency

mininet > h1 ping h3 PING 10.0.3.101 (10.0.3.101) 56(84) bytes of data.

64 bytes from 10.0.3.101: icmp_seq =1 ttl =62 time=42.1 ms

64 bytes from 10.0.3.101: icmp_seq =2 ttl =62 time=41.3 ms

64 bytes from 10.0.3.101: icmp_seq =3 ttl =62 time=41.1 ms

^C

--- 10.0.3.101 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/ avg /max/ mdev = 41.119/41.546/42.143/0.465 ms

25

Baseline: End to End (E2E) Path

ÅTraceroute shows a path through the two DPI gateways, as expected

mininet > h1 traceroute - n h3

traceroute to 10.0.3.101 (10.0.3.101), 30 hops max, 60 byte packets

 1 10.0.1.1 21.180 ms 21.028 ms 20.837 ms

 2 10.0.2.1 42.565 ms 42.482 ms 42.418 ms

 3 * * 10.0.3.101 43.144 ms

mininet >

26

Configure Switch via ODL Platform REST API

27

Configure Switch via ODL Platform REST API

ÅUse these headers:
Accept: application/xml

Authorization: Basic YWRtaW46YWRtaW4 =

ÅThen post the following flows (next slide) to Switch 2's table zero:
PUT flow with ID 202 to

http://<controller_ip>: 8181/restconf/config/opendaylight -

inventory:nodes/node/openflow:2/table/0/flow/202

PUT flow with ID 303 to

http://<controller_ip>: 8181/restconf/config/opendaylight -

inventory:nodes/node/openflow:2/table/0/flow/303

28

RESTCONF Flows (XML)

29

The Switch Accepts the Flows

$ sudo ovs - ofctl - O OpenFlow13 dump - flows s2

cookie=0x0 , duration=350.260s, table=0, n_packets =0, n_bytes =0,

priority=200,ip,nw_dst=10.0.3.101 actions=set_field:f6:2f:25:06:ab:27 -

>eth_dst,output:4

cookie=0x1 , duration=33.552s, table=0, n_packets =0, n_bytes =0,

priority=200,ip,nw_dst=10.0.1.101 actions=set_field:f2:3e:8d:a4:71:07 -

>eth_dst,output:5

30

Latency Reduced

ÅPing now shows that the second, slow DPI is no longer in the path:

mininet > h1 ping h3

PING 10.0.3.101 (10.0.3.101) 56(84) bytes of data.

64 bytes from 10.0.3.101: icmp_seq =1 ttl =63 time=21.3 ms

64 bytes from 10.0.3.101: icmp_seq =2 ttl =63 time=20.9 ms

64 bytes from 10.0.3.101: icmp_seq =3 ttl =63 time=20.7 ms

^C

--- 10.0.3.101 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms

rtt min/ avg /max/ mdev = 20.713/20.983/21.320/0.252 ms

31

Latency Reduced

ÅTraceroute Confirms that the flow bypasses the second DPI

mininet > h1 traceroute - n h3

traceroute to 10.0.3.101 (10.0.3.101), 30 hops max, 60 byte packets

 1 10.0.1.1 21.117 ms 20.796 ms 20.423 ms

 2 10.0.3.101 24.597 ms 24.477 ms *

32

DPI Bypass Demo

Approach #2: ODL SFC

33

A Little More Detail: ODL

h5[tǊƻǾƛŘŜǎ ŀ bƻǊǘƘōƻǳƴŘ {C/ ά!ǇǇέ
34

SFC Approach: Create a ñService Overlayò

Å1. Register Firewalls in service pool
Åά{ŜǊǾƛŎŜ CǳƴŎǘƛƻƴǎέ

Å2. Configure switches to forward
packets based on controller logic

Åά{ŜǊǾƛŎŜ CǳƴŎǘƛƻƴ CƻǊǿŀǊŘŜǊǎέ

Å3. Configure SFC Logic
Å Χ bŜȄǘ {ƭƛŘŜ

#ODSummit

1

2

3

SFC Workflow (Highly Abstracted!)

ÅRegister (Previous Slide)
ÅService Functions (Appliances) -- AKA Network Services

ÅService Function Forwarders (ODL SFC Controlled Switches)

Å/ǊŜŀǘŜ {ŜǊǾƛŎŜ CǳƴŎǘƛƻƴ ά/Ƙŀƛƴǎέ
Åά/Ƙŀƛƴέ ƻŦ bŜǘǿƻǊƪ {ŜǊǾƛŎŜǎ

ÅI.e. First Firewall, then Apply Parental Control, then Virus Scan etc.

ÅCreate Service Function Paths and Rendered Service Paths
ÅSelects path through actual appliance (SF) instances e.g.

ÅRSP-1 = Firewall-1, Parental-Control-1, Virus-Scan-1

ÅRSP-7 = Firewall-3, Patental-Control-1, Virus-Scan-2

Å/ǊŜŀǘŜ ά/ƭŀǎǎƛŦƛŜǊέ
ÅApply SFC to flows

#ODSummit

DPI Bypass Demo

Approach #2: ODL SFC

Note: This will be a live demo

37

Based on: https:// lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
 by Brady Johnson and Ricardo Noriega at Ericsson.com

https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html
https://lists.opendaylight.org/pipermail/sfc-dev/2015-July/001408.html

Baseline

ÅNo Flows in Switch, No Objects in GUI

#ODSummit

Configure via REST API

ÅAdd SF, SFF, SFC, SFP and RSP
ÅGUI Populated

ÅController then injects logic into SFF via
flows

$ sudo ovs - ofctl dump- flows

sff1 - OOpenFlow13

#ODSummit

Test 1: Configure Classifier to Use RSP-1

tcpdump shows WGET goes
through both service functions

Total time: 0.341 seconds

#ODSummit

SFF-1 Traffic SFF-2 Traffic

