XenGT: A Full GPU Virtualization Solution with Mediated Pass-Through

March 27, 2014

Zhiyuan Lv, zhiyuan.lv@intel.com

Kevin Tian, kevin.tian@intel.com

Eddie Dong, eddie.dong@intel.com

David Cowperthwaite, david.j.cowperthwaite@intel.com
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
• How XenGT Works
• Demo
• Current Status
• Summary
GPU Use Cases

3D Graphics

Media

Compute
Virtualization Use Cases

Use Cases
- Virtual Data Center
- Cloud
- Remote Virtual Desktop
- Rich Virtual Client
- Bring Your Own Device
- Smart TV
- Multi-Screen Infotainment
- Secure e-Payment
...
GPU Virtualization Gains Momentum
Scenario-1: Rich Virtual Client

- **IT**: Office Productivity
- **Development**: CADs
- **Entertainment**: Games/Video

3D/Media Acceleration
Scenario-2: Remote Virtual Desktop

- Desktop#1: Office Productivity
- Desktop#2: CADs
- Desktop#N: Video Edit

3D/Media Acceleration

Remote Framebuffer Streaming

Network
Scenario-3: GPU As A Service
And many other virtualization scenarios which run GPU-accelerated tasks in VM
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
• How XenGT Works
• Demo
• Current Status
• Summary
Linux Graphics Stack

Kernel

3D

Media

Compute

API Layer (OpenGL/VAAPI/OpenCL)

Window System

User Mode Driver

DRM Driver

Kernel

GPU
Virtualization in API Level

- API forwarding between frontend and backend driver
- Gain GPU acceleration capability in VMs
- However, lagging features and API compatibility
Virtualization in Driver Level

- Enhance VGA device model with GPU resources
- New user mode and kernel drivers for the specific virtual device, but still like API forwarding
- So, lagging features and API compatibility too
Virtualization in Device Level

- Assign GPU to a specific VM
- Near-native performance
- Full features
- However, no sharing capability
So... none of above techniques can meet all requirements of GPU Virtualization:

- **Performance**
- **Feature**
- **Sharing**
Here Comes Full GPU Virtualization!

Run native graphics driver inside VMs!

Performance! Feature! Sharing!
XenGT Target: Intel® Processor Graphics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22nm</td>
<td>Build-in into 4th generation Intel® Core™ processors</td>
</tr>
<tr>
<td>GT3</td>
<td>2x computational shader power with new GT3 - Intel® Iris™</td>
</tr>
<tr>
<td>EDRAM</td>
<td>128MB fast cache for bandwidth saving with GT3e - Intel® Iris™ Pro</td>
</tr>
<tr>
<td>QSV</td>
<td>High Speed Video Decode & Encode H.264/MPEG-4 AVC, VC-1</td>
</tr>
</tbody>
</table>
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
 • How XenGT Works
• Demo
• Current Status
• Summary
XenGT: A Full GPU Virtualization Solution

• Built on a mediated pass-through framework
 • Privileged I/O operations are trap-and-emulated
 • Performance critical operations are passed through

• Virtual GPU (vGPU) device model
 • Equivalent features as physical Intel Processor Graphics

• Running native graphics driver inside VMs
 • Leverage existing driver optimizations and stability fixes

• First implementation on Xen hypervisor
 • Core device model reusable in other hypervisors
Intel® Processor Graphics Architecture

- GPU
 - Registers
 - Render Engine
 - Display Engine
 - Graphics Virtual Memory
 - Page Table

- One global virtual memory address space
- Multiple local memory address spaces

System Memory
XenGT Graphics Memory Partition

- VM1
- VM2
- VM3

Host View

- System Memory
- Page Table
- Graphics Virtual Memory
- Render Engine
- Display Engine
- Registers

Balloon memory

Available graphics memory to VMs
GPU Page Table Virtualization

- Shadow GPU page tables (GPN<->HPN)

Shared shadow *global page table*

Per-VM shadow *local page table*
Render Engine Virtualization

- A simple round-robin scheduler
 - In 16ms epoch

- Render owner access is trap-and-forwarded to the render engine

- Non-render owner access is trap-and-emulated

Render context switch flow
1. Wait VM1 ring buffer becoming empty
2. Save render MMIO registers for VM1
3. Flush internal TLB/caches
4. Hardware context switch
5. Restore render MMIO registers for VM2
6. Submit previously queued commands
Display Virtualization – Direct Mode

- Direct mode – directly program VM frame buffer to display engine
- Display Switch
 - Simple as frame buffer flip
 - Panel fitting for VMs with different resolutions
Display Virtualization – Indirect Mode

- Indirect mode – VM frame buffer is mapped and composited through Dom0
 - XenGT provides interface for dom0 to map VM frame buffer
 - DRM is extended to bind frame buffer to GEM buffer object
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
• How XenGT Works
 • Demo
• Current Status
• Summary
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
• How XenGT Works
• Demo
• Current Status
• Summary
Current Status

• Initial release in 09/2013, including all major features
 • Multiple VMs (Dom0 + 3 VMs) running simultaneously
 • Display switch among VMs

• Second release in 03/2014
 • More stability improvement
 • Support guest resolution changes
 • Enhanced support for multiple display and hotplug
 • Preliminary support for GPU recovery

• More developing/tuning work ongoing
Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
Agenda

• Why GPU Virtualization
• How GPU Virtualization Works
• How XenGT Works
• Demo
• Current Status
• Summary
Summary

• GPU virtualization gains momentum

• Full GPU virtualization provides a good balance among performance, feature and sharing capability

• XenGT is a full GPU virtualization solution, on Intel® Processor Graphics, running native graphics driver inside VMs

• Call for action - try and feedback
 • https://github.com/01org/XenGT-Preview-kernel
 • https://github.com/01org/XenGT-Preview-xen
 • https://github.com/01org/XenGT-Preview-qemu
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment (MLE). Intel TXT also requires the system to contain a TPM v1.s. For more information, visit http://www.intel.com/technology/security

Intel, Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved.