
Service Discovery in 
OSGi

Beyond the JVM using Docker, Consul and Registrator



About me

CTO @ Dexels 

Architect at Sendrato Wearables 

Mildly incoherent at times



• Service Discovery ‘Theory’ 

• Pile up technologies 

• Demo 

• Conclusion 

• Wild discussions

Service Discovery in 
OSGi

Beyond the JVM using Docker, Consul and Registrator



Service Discovery (SOA)

• Can change providers at will 

• Access to many 3rd party services 

• Services go shopping for other services 

• Services can respond to ‘markets’



Service Discovery for normal 
people

Find system components



Example

Tomcat Server

Redis Database



Traditional solutions

• Hard code it 

• DNS 

• Configuration management



Why does that need to 
change?

• Horizontally scaled architectures 

• Cloud infrastructure 

• Micro services



How?

• Finding services by exploring systems 

• Use a well-known central registry where every 
service registers



Service Repository
• Distributed key-value stores 

• Low volume 

• Resilience and availability are most important



Bear with me!



Consul
• Distributed Key/Value configuration store 

• Like Etcd or Zookeeper, but opinionated 

• Availability over consistency 

• Nice web UI 

• Service check agent 

• DNS and HTTP API



Consul DNS Api

• Use consul as DNS server 

• Serves: service.consul domain 

• Resolve service with 
[tags].<name>.service.consul 

• Legacy friendly



DNS limitations

• Port is missing (except in SRV records) 

• Not designed for dynamic data



Consul HTTP Api

• All Consul functions available 

• No out of the box support 

• Event notification with long polling



So suppose this thing 
works…

• We have a reliable, distributed service store 

How do we feed it?



Docker containers

• Light-weight virtual machine 

• Process with a filesystem and a network 

• Universal, polyglot application deployment 
mechanism



A Docker container from a 
service perspective

• An image 

• An id 

• Exposed ports 

• Labels



Docker

• Makes reasoning about services much easier



Docker

• Restful HTTP ‘manager’ daemon on each host 

• CLI tools use the HTTP interface to the daemon



Demo: Basics



Registrator

• Go based 

• Watches Docker daemon using long polling 

• Updates a back-end: Etcd, Consul or SkyDns 

• https://github.com/gliderlabs/registrator

https://github.com/gliderlabs/registrator


What data do we have?

HostIp: 192.168.99.102 

HostPort: 49212 

ContainerPort: 3306 

Protocol: TCP 



Metadata
• Which service is this (name, tags) 

• What protocol? How do I consume the service? 

We can add them as docker labels! 



Docker labels

• Completely generic 
docker run --name some-mysql \ 
  -P \ 
  -l SERVICE_NAME=my_mysql_instance \ 
  -l SERVICE_TYPE=mysql \ 
  -l SERVICE_TAGS=production 
  -l SERVICE_VERSION=5.5.1 \ 
  --rm \ 
  mysql



So suppose this thing 
works…

• We have a reliable, distributed service store 

• We synchronize it with the Docker daemon(s) 

• We can access it using an HTTP API 

• It notifies us when it changes 



This was the easy part



Dynamic Services

• Any service can just appear 

• Multiple instances can appear 

• Instances can disappear without warning 

• Service cascades



OSGi

• Java based dynamic service framework 

• Since 1999 

• Initially for embedded systems 

• Now very popular in cloud deployments



OSGi
• Central ‘Service Bus’ 

• Any Java object can be registered as a service 

• Code can redeploy on the fly 

• Services can come and go dynamically 

• Services can depend on other services



Consul & OSGi

• Monitor Consul 

• Inject services into OSGi



Consul
Docker

Container

Container
Container

OSGi 
Environment

Config

Config
Config

Consul Bridge

Consul 
Cluster

Node

Node
Node

Registrator



Docker & OSGi

• The Consul ‘monitor’ won’t know what a service 
is really about 

• We need to separate configuration from the 
‘driver’



Configuration Admin

• Create Configuration objects based on docker 
data 

• Configuration object = PID + KV 

• Leave the actual interpretation to ‘driver bundles’ 

• ‘Source agnostic’



Example

• Create a HTTP / JSON driver 

• Insert documents into Elasticsearch



Final demo!



Service Checks
• Consul can add checks to a service registration 

• HTTP API 

• Script API 

• Deadman switch 

• If the check fails it will no longer report that 
service



Dynamic

• Truly embraces a dynamic system 

• Matches the OSGi ‘way’



Really simple

• Registrator is a few hundred lines of Go code 

• consul-osgi is a few hundred lines of Java



Scheduler agnostic

• It does not matter who / what started the 
containers



Unix philosophy

• Do one thing and one thing well 

• Easily integrate with other tools



consul-OSGi is a hobby 
project!

• But turning it into something more would be cool 

And I think it can benefit the OSGi community



Future work
• Conventions on metadata would be nice 

• Better security model for Docker 

• Use other sources of configuration like Kubernetes 

• Downloadable drivers using mvn coordinates 

• Consul backed load balancer (Vulcand) 

• Integrate with secure storage



Thank you!
frank@dexels.com 

Twitter @lyaruu 

https://github.com/flyaruu/consul-osgi 

blog: http://www.codemonkey.nl/

https://github.com/flyaruu/consul-osgi
http://www.codemonkey.nl/

