Apache MRQL (incubating): Advanced Query Processing for Complex, Large-Scale Data Analysis

Leonidas Fegaras

University of Texas at Arlington

http://mrql.incubator.apache.org/

04/12/2015
Outline

- Who am I?
- Motivation
- Design objectives
- Overview of MRQL
- Examples
- Demo
- Architecture
- Current work
- Future plans
About me

Leonidas Fegaras
fegaras@cse.uta.edu

- Associate Professor at UTA (Univ. of Texas at Arlington)
- A committer and PPMC member of Apache MRQL
- Interested in big data management:
 - cloud computing, web data management, distributed computing,
 - data stream processing, query processing and optimization
- Past projects:
 - HXQ: XQuery in Haskell
 - XStreamCast: query processing of streamed XML data
 - XQP: XQuery processing on P2P
 - XQPull: stream processing for XQuery
 - LDB: OODB query processing
Apache MRQL (incubating)

MRQL: a Map-Reduce Query Language

History:

- Fall 2010: started at UTA as an academic research project
- March 2013: enters Apache Incubation
- 3 releases under Apache so far: latest MRQL 0.9.4
Motivation

- MapReduce is not the only player in the Hadoop ecosystem any more
 - designed for batch processing
 - not well-suited for some big data workloads:
 real-time analytics, continuous queries, iterative algorithms, ...

- Alternatives:
 - Spark, Flink, Hama, Giraph, ...

- New distributed stream processing engines:
 - Spark Streaming, Flink Streaming, Storm, S4, Samza, ...
Motivation

- Designed to relieve application developers from the intricacies of big-data analytics and distributed computing
- Steep learning curve
- Hard to develop, optimize, and maintain non-trivial applications coded in a general-purpose programming language
- Hard to tell which one of these systems will prevail in the near future
 - applications coded in one of these paradigms may have to be rewritten as technologies evolve
Motivation

... or you can express your applications in a query language that is independent of the underlying distributed platform!
... or you can express your applications in a query language that is independent of the underlying distributed platform!

Does it have to be SQL? We’re noSQL after all!
Design objectives

- Wanted to develop a powerful and efficient query processing system for complex data analysis applications on big data
 - more powerful than existing query languages
 - able to capture most complex data analysis tasks declaratively
 - able to work on read-only, raw (in-situ), complex data
 - HDFS as the physical storage layer
 - platform-independent:
 - the same query can run on multiple platforms on the same cluster
 - allowing developers to experiment with various platforms effortlessly
 - efficient!
Design objectives

- We envision MRQL to be:
 - a common front-end for the multitude of distributed processing frameworks emerging in the Hadoop ecosystem
 - a tool for comparing these systems (functionality & performance)
MRQL is **NOT** SQL!

MRQL is an SQL-like query language for large-scale, distributed data analysis on a computer cluster.

Unlike SQL, MRQL supports:
- A richer data model (nested collections, trees, ...)
- Arbitrary query nesting
- More powerful query constructs
- User-defined types and functions

No nulls, no outer-joins.

MRQL queries can run on multiple distributed processing platforms currently Apache Hadoop MapReduce, Hama, Spark, and Flink.

The MRQL syntax and semantics have been influenced by:
- Modern database query languages (mostly, XQuery and ODMG OQL)
- Functional programming languages (sequence comprehensions, algebraic data types, type inference)
The MRQL query language:

- provides a rich type system that supports hierarchical data and nested collections uniformly
 - general algebraic datatypes (similar to Haskell)
 - JSON and XML are user-defined types
 - pattern matching over data constructions (similar to 'case’ in Haskell)
 - local type inference (similar to Scala)
- allows nested queries at any level and at any place
 - no need for awkward nulls and outer-joins
- supports UDFs
 - provided that they don’t have side effects
- allows to operate on the grouped data using queries
 - as is done in OQL and XQuery
 - improves SQL group-by/aggregation (which are too awkward)
Language features

The MRQL query language:

- supports custom aggregations/reductions using UDFs provided they have certain properties (associative & commutative)
- supports iteration declaratively to capture iterative algorithms, such as PageRank
- supports custom parsing and custom data fragmentation
- provides syntax-directed construction/deconstruction of data to capture domain-specific languages
How does MRQL compare to Hive?

<table>
<thead>
<tr>
<th></th>
<th>MRQL</th>
<th>Hive</th>
</tr>
</thead>
<tbody>
<tr>
<td>metadata</td>
<td>none</td>
<td>stored in RDBMS</td>
</tr>
<tr>
<td>data</td>
<td>nested collections, trees, and</td>
<td>relational</td>
</tr>
<tr>
<td></td>
<td>custom complex types</td>
<td></td>
</tr>
<tr>
<td>group-by</td>
<td>on arbitrary queries</td>
<td>not on subqueries</td>
</tr>
<tr>
<td>aggregation</td>
<td>arbitrary queries on grouped data</td>
<td>SQL aggregations</td>
</tr>
<tr>
<td>subqueries</td>
<td>arbitrary query nesting</td>
<td>limited subquery support</td>
</tr>
<tr>
<td>platforms</td>
<td>Hadoop, Hama, Spark, Flink</td>
<td>Hadoop, Tez, (Spark)</td>
</tr>
<tr>
<td>file formats</td>
<td>text, sequence, XML, JSON</td>
<td>text, sequence, ORC, RCFile</td>
</tr>
<tr>
<td>iteration</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>streaming</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
A sparse matrix X is represented as a bag of (X_{ij}, i, j).

$$Z_{ij} = \sum_{k} X_{ik} \ast Y_{kj}$$

```sql
select ( sum(z), i, j )
from (x,i,k) in X, (y,k,j) in Y, z = x*y
group by i, j
```
Group all persons according to their interests and the number of open auctions they watch. For each such group, return the number of persons in the group:

```
select ( cat, os, count(p) )
from p in XMARK,
    i in p.profile.interest
group by cat: i.@category,
    os: count(p.watches.@open_auctions)
```
Derive k clusters from a set of points P:

\[
\text{repeat centroids} = \ldots \\
\text{step select < X: \text{avg}(s.X), Y: \text{avg}(s.Y) >} \\
\quad \text{from point in Points} \\
\quad \text{group by k: (select c from c in centroids} \\
\quad \quad \quad \quad \text{order by distance(point,c))}[0]
\]
Example: the PageRank algorithm

Simplified PageRank:

- A graph node is associated with a PageRank and its outgoing links:

 \[
 \langle \text{id: 23, rank: 0.0, adjacent: \{10, 45, 35\}} \rangle
 \]

- Propagate the PageRank of a node to its outgoing links; each node gets a new PageRank by accumulating the propagated PageRanks from its incoming links:

 \[
 \text{repeat nodes = ...}
 \]

 \[
 \text{step select } \langle \text{id: m.id, rank: n.rank, adjacent: m.adjacent} \rangle
 \]

 \[
 \text{from } n \text{ in (select } \langle \text{id: key, rank: sum(c.rank)} \rangle
 \]

 \[
 \text{from } c \text{ in (select } \langle \text{id: a, rank: n.rank/count(n.adjacent)} \rangle
 \]

 \[
 \text{from } n \text{ in nodes, a in n.adjacent)}
 \]

 \[
 \text{group by key: c.id),}
 \]

 \[
 m \text{ in nodes}
 \]

 \[
 \text{where n.id = m.id}
 \]
The complete PageRank using map-reduce (MR)

```
graph = select ( key, n.to )
    from n in source(line, "graph.csv", ...)
    group by key: n.id;  # preprocessing: 1 MR job

size = count(graph);

select ( x.id, x.rank )
from x in
    (repeat
        nodes = select < id: key, rank: 1.0/size, adjacent: al>
            from (key,al) in graph  # init step: 1 MR job
        step select (< id: m.id, rank: n.rank, adjacent: m.adjacent >,
                abs((n.rank-m.rank)/m.rank) > 0.1)
            from n in (select < id: key, rank: 0.25/size+0.85*sum(c.rank)>
                from c in (select < id: a, rank: n.rank/count(n.adjacent)>
                    from n in nodes, a in n.adjacent )
                group by key: c.id),
            m in nodes
        where n.id = m.id)  # repeat step: 1 MR job

order by x.rank desc;  # postprocessing: 1 MR job
```
Demo link
Query translation stages:

1. type inference
2. query translation and normalization
3. simplification
4. algebraic optimization
5. plan generation
6. plan optimization
7. compilation to Java code
The essence of distributed data processing

- distribute data to worker nodes (shuffling)
- perform computations on each data partition
- combine the results of these computations into one result
Algebraic operators

- Algebraic operations on bags:

 - `groupBy (X: \{ (\kappa, \alpha) \}) : \{ (\kappa, \{\alpha\}) \}`

 - `flatMap (f: \alpha \rightarrow \{\beta\}, X: \{\alpha\}) : \{\beta\}`

 - `reduce (\oplus: (\alpha, \alpha) \rightarrow \alpha , X: \{\alpha\}) : \alpha`

 - `union (X: \{\alpha\}, Y: \{\alpha\}) : \{\alpha\}`

- Extra operation (join):

 - `coGroup (X: \{ (\kappa, \alpha) \}, Y: \{ (\kappa, \beta) \}) : \{ (\kappa, \{\alpha\}, \{\beta\}) \}`

- `map-reduce = flatMap \circ groupBy \circ flatMap`

- List operations: `orderBy`, `append`

- Iteration: `repeat (f: \{\alpha\} \rightarrow \{\alpha\}, X: \{\alpha\}) : \{\alpha\}`
Query optimization

The query optimizer:

- uses a cost-based optimization framework to map algebraic terms to efficient workflows of physical operations
- handles dependent joins (used for nested collections)
- unnest deeply nested queries and converts them to join plans
Case study: Queries similar to matrix multiplication:

\[
\begin{align*}
& \text{select } (\text{sum}(z), i, j) \\
& \text{from } (x, i, k) \text{ in } X, (y, k, j) \text{ in } Y, \\
& \text{z} = x \times y \\
& \text{group by } i, j \\
& \text{select } h(k, \text{reduce}(\text{acc}, z)) \\
& \text{from } x \text{ in } X, y \text{ in } Y, z = f(x, y) \\
& \text{where } jx(x) = jy(y) \\
& \text{group by } k: (gx(x), gy(y))
\end{align*}
\]

- **GroupByJoin (Valiant’s algorithm):** distribute the data to workers in the form of a grid \(n \times n \) of partitions
 - each partition contains only those rows from \(X \) and those columns from \(Y \) needed to compute a single partition of the resulting matrix
 - \(X \) and \(Y \) values are replicated \(n \) times
 - each worker uses \((|X| \times |Y|)/n^2 \) memory

![Diagram showing distribution of data](attachment://matrix_multiplication_diagram.png)
Current work: distributed stream processing

- Support for continuous queries over multiple streams of data
- Data come in incremental batches ΔX
- Batch streaming based on sliding windows

Query $q(X_1, X_2; Y)$ over one invariant and two streaming data sources
Current work: distributed stream processing

```
select (k, avg(p.Y))
  from p in stream(binary, "points")
group by k: p.X
```

- Currently, works on Spark Streaming
- Soon, on Flink Streaming
Next step: incremental query processing

- **Problem**: translate any batch program (e.g., PageRank) to an incremental program automatically
- **Solution**: Break the query $q(X_1, X_2; Y) = g(f(X_1, X_2; Y))$ such as:

 $$f(X_1 \cup \Delta X_1, X_2 \cup \Delta X_2; Y) = f(X_1, X_2; Y) \otimes f(\Delta X_1, \Delta X_2; Y)$$

- Requires program analysis & transformation
Summary

- Slides are available at the MRQL wiki page: http://wiki.apache.org/mrql/
- We are looking for new developers to work on open tasks:
 - add support for more distributed/streaming platforms
 - Storm
 - support more input formats, including key-value stores
 - implement incremental query processing
 - specify more data analysis algorithms
 - benchmarking
- Are you developing a distributed processing platform in need for a query language?
 - talk to us!