
Soletta
Closing the IoT Development Gap

OpenIoT & ELC Europe 2016

Agenda

- Who am I?

- IoT Development Gaps

- How to close IoT Development Gaps

- Soletta Overview

- Key Subsystems

- Flow Based Programming

- Developer Tools

- Future Plans

Who am I?

- Brazilian

- Software Developer since 9yo

- Working with Embedded since 2005

- Software development services

- Passionate about efficiency

- Soletta Architect & Lead Developer

Gustavo Sverzut Barbieri
Computer Engineer

ProFUSION embedded systems

IoT Development Gaps

IoT Development Gaps

- IoT differences to traditional embedded systems

- Solutions are focused on a single subset (just hardware, just network…)

- Solutions are platform specific, no scalable solutions

- Nothing is integrated

Hard to reuse your knowledge

IoT Development Gaps: needs

- Fast development cycles

- Cover product families (MCU, gateways, multi core CPUs)

- Allow small engineering teams

- Ease choices

How to close
IoT Development

Gaps?

- Uniform API abstracting the
multiple platforms

- 3 mains areas
- I/O

- Comms

- OS services

- Easy to use API

- Scalable

Soletta Overview

Soletta Overview

- Open Source License: Apache 2 (static linkage for small systems)

- Real Open Source Development Model @ GitHub

- Portable code: multiple OSes from day-0

- Many supported boards & easily extensible to add more

- Scalable yet easy to use: Object-Oriented C code

- Event-Driven Programming: abstracts OS specifics from user

- Modular: use only what you need

Linux Linux Micro (PID1) Contiki RIoT Zephyr

Intel
Edison

Intel
Galileo

Arduino
101

Atmel
SAMR21 XPro

Raspberry
Pi

Intel
MinnowBoard MAX

Soletta Subsystems
I/O Comms OS Services

Data TypesLogging Parsers

Persistence

Worker Threads Crypto

Machine Learning

Main Loop

Soletta Input/Output Subsystem

- Low-level: GPIO, AIO, I2C, SPI, UART, PWM

- High level: Sensors and Actuators
- Linux uses IIO (Industrial Input/Output)

- Zephyr will use sensor subsystem (TODO)

- OS specifics are abstracted via main loop - no ISR or threads are exposed

Mantra “implement drivers where they belong: IN THE KERNEL”

Soletta Communications Subsystem

- MQTT

- HTTP server & client

- LWM2M

- OIC/OCF

- CoAP

- BLE

Mantra “choose wisely & integrate well”
Similar APIs should feel the same

APIs should be implementable everywhere

Soletta OS Services Subsystem

- Software Update (check, fetch, apply)

- Start, Stop & Monitor services (ie: bluetooth)

- Power supply enumeration & monitoring

- Poweroff, Reboot, Suspend, Enter Rescue mode…

- Network Connection Manager

Soletta Other Subsystems

- Data Types: list, array, buffers and slices

- Logging: with domains, thread-safe and can be compiled-out

- Parsers: JSON based on string slices (no memory allocation)

- Persistence: File, EFIVars and EEPROM with compile-time defined structure

- Worker Threads: low priority preemptible threads

- Crypto: Certificates, Message Digest and Encryption (TODO)

- Machine Learning (SML): Fuzzy & Neural Network made easy to use

How to close
IoT Development

Gaps?

- Uniform API abstracting the
multiple platforms

- 3 mains areas
- I/O

- Comms

- OS services

- Easy to use API

- Scalable

checklist
?

Leaks & SEGV

most users don’t get callbacks

boring pattern “on event, get data”

Flow Based
Programming

FBP
or how did we avoid

callbacks and memory management
for our users

making their lives easier

Persistence

Timer

Action

interval=10s

interval=10s

“tick”

HTTP
ServerDial

FBP

- Invented by J. Paul Morrison in the early 1970s http://www.jpaulmorrison.com/fbp

- Components are Black Boxes with well defined interfaces (Ports)

- Focus on Information Packets (IP)

- Started to gain traction in Web:

- Also on Embedded Systems:

- Also on Multimedia:

Facebook Flux Google TensorFlow Microsoft Azure Event HubsNoFlo

NodeREDROS MicroFlo

Apple QuartzV4L Gstreamer

http://www.jpaulmorrison.com/fbp

FBP: Nodes as Black Boxes

- Simple interface

- Low (no?!) coupling, allows replacing components

- Easy to optimize code size by removing unused ports

- Parallelization

- Isolation (including processes)

- Internally can use Event-Driven Programming (Main Loop), Threads...

Users only manage connections.
Everything else is done by the FBP core or the components

“tick”OUT

INTERVAL

OUT

Create Instances (timer is in milliseconds!)
dial(my_dialer_type)
http_server(http-server/int:url=”/timeout_ms”)
persistence(persistence/int:name=”timeout_ms”,

storage=”fs”,default_value=10000)
timer(timer)
action(my_action_type)

Connect Instances
dial OUT -> IN persistence
persistence OUT -> IN dial

http_server OUT -> IN persistence
persistence OUT -> IN http_server

persistence OUT -> INTERVAL timer
timer OUT -> TRIGGER action

FBP: Example

Persistence

Timer

Action

interval=10,000ms

interval=10,000ms

HTTP
ServerDial

IN IN

IN

OUT OUT

TRIGGER

FBP: Pros & Cons

Cons:

- Paradigm shift
- Although small, still adds overhead compared to carefully written C code
- Requires “bindings” (node type module) to use 3rd party libraries
- Needs balance on what to write as FBP and what to create custom node types

Pros:

- No leaks or SEGV, reduced blaming!
- Simple interface (nodes & ports) eases team collaboration
- Easy to read, write and visualize, aids communication with customers & designers
- Super fast prototyping & testing

FBP: show me the size!

- Intel Quark SE DevBoard

- Zephyr OS

- Soletta

- FBP using OIC/OCF light server
- IPv6

- OIC/OCF (UDP + CoAP + CBOR)

- GPIO

- Auto-generated code from FBP

Flash - Kb

107

RAM Peak - Kb

32

Developer Tools

Developer Tools - code generators

sol-oic-gen.py
generates node types C code from OIC/OCF JSON specs

sol-flow-node-type-gen.py
generates node types C boilerplate from JSON specs

sol-fbp-generator
generates C from FBP Less manual work

Less errors
Easier migration to new APIs
Ease of use with no runtime overhead

Developer Tools - DevApp

- Web-based IDE using node.js and angular.js

- Can be executed on target (on-board development - Linux)

- Systemd journal viewer

- Built-in documentation

- Text Editor with syntax highlight and code completion

- FBP runner, inspector and viewer (Graphviz)

- Try Soletta without installing it! All you need is a browser and an SD/USB drive

https://github.com/solettaproject/soletta-dev-app

Syntax Highlight and as-you-type error checking

On-the fly FBP visualization
using graphviz

systemd journal log viewer

Future Plans
Contributions are welcome!

- More Node.JS bindings

- Python bindings

- Fancier FBP Web Inspector

- Visual Editor

- DevApp generating firmware images

- FBP meta-type for LWM2M, OIC and
BLE

- FBP statically linking disk size
optimizations

- Use mempools for fixed size objects

- Port to ESP8266

Gustavo Sverzut Barbieri
<barbieri@profusion.mobi>

Thank You!
Questions?

github.com/solettaproject/

Want to know more about
FBP
Flow Based Programming?
See my other talk:

Flow Based Programming
Applied to IoT Development
October 11th at 17h10

https://github.com/solettaproject/
https://github.com/solettaproject/

