Linux Audio for Smartphones

System integration basics
• Android audio stack overview
• Modern smartphone audio subsystems
• Traditional solutions
• ASoC – the Linux solution
 • Design overview
 • Brief introduction to chip drivers
• Walk through of system audio driver construction
• Debugging tips
• Future directions
Android audio stack

Applications

MediaPlayer
MediaRecorder

AudioFlinger

libaudio
Modern smartphone audio subsystems

- HDMI
- CPU
- DSP
- Mixing
- Earpiece
- Speaker
- Headset
- Dock
- Cellular modem
- Bluetooth
Traditional driver model

Memory ➔ Processing ➔ Analogue
Traditional driver model

• **Monolithic driver for each card**
 - No structure for managing off-CPU hardware
 - Very little reuse

• **Tight coupling between application and kernel code**
 - Per-use case register settings
 - Detailed register level knowledge of components

• **Time consuming**
• **ASoC embedded audio framework**
 • Merged since 2.6.21, April 2007
 • Provides standard ALSA interface to applications
• **Reusable drivers for each chip**
• **Minimal per-system drivers**
• **Use case configuration done by userspace**
• **Automatic and transparent power management**
• **More reuse, less coupling**
Dynamic Audio Power Management

- Looks for audio paths connecting inputs to outputs
- Powers only components in an active path
- Automatically activates DACs and ADCs
• **Four classes of control**
 • Audio processing controls (eg, volume, effects)
 • Audio routing controls (DAPM controls and routes)
 • Power controls (DAPM widgets, bias)
 • Stream control (Digital audio streaming)
• **Mostly direct mapping into register map**
 • `SOC_DOUBLE_R_TLV("DAC1 Volume", WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv)`,
Driver integration walkthrough

- S3C6410/WM0010
- WM8915 CODEC
 - “Baseband”
 - WM9081 Amplifier
 - Headset
 - Speaker
 - Mics
 - Subwoofer

http://opensource.wolfsonmicro.com/content/speyside-audio
• **AudioPolicyManager and AudioHardware**
 - platform/hardware/alsa_sound – Generic ALSA, asound.conf, LGPL
 - devices/samsung/crespo – Nexus S, hard coded, Apache licensed

• **Getting use cases**
 - Devices specified when streams are opened
 - `setMode()`

• **Applying use cases**
 - Run external utilities
 - Use `asound.conf`
 - Call raw ALSA control APIs
 - Apply settings with ALSA UCM
 - Using common base use cases helps
• **Data in debugfs**
 - `CONFIG_DEBUG_FS`
 - `mount -t debugfs /dev/null /debug`

• **codec_reg – Register map**

• **dapm_pop_time – log sequences**

• **dapm directory**
 - **SPKL**: Off in 0 out 1
 - in "DAC2L" "DAC2L"
 - out "static" "SPKL PGA"

• **Tools:**
 - `git://git.opensource.wolfsonmicro.com/asoc-tools.git`
• Audio stuck – check clocking
• Silent audio – check volumes and mutes
• Use bypass paths to bisect
• Turn volumes up to maximum
• Make sure machine drivers check error codes
• Check kernel logs for errors
• 2.6.38 and later support trace points
 • http://www.sirena.org.uk/log/2011/01/22/tracing-asoc-with-trace-points/
Future work

- Nicer handling of digital basebands
- Resolve headset detection API compatibility
- Greater use of DSP
 - Enhanced features – ambient noise cancellation, beam forming, offloaded decompression, speaker compensation
 - Even more dynamic reconfiguration of the audio subsystem
- Coefficient management and in-system calibration
- Use case development and management
 - Media controller API
 - User interfaces for configuration development
- ASoC conference, 4th-5th May
 - http://www.slimlogic.co.uk/?p=268