Building Data Pipelines with Open Source Components and Services

Heikki Nousiainen

Open Source Summit Japan 2018
Agenda

1. Introduction
2. Motivation
3. Challenges
4. Open Source
5. Data pipelines - Old and New
6. Build or Buy
7. Conclusions
8. Q & A

This presentation was created by Aiven Ltd - https://aiven.io. Product and vendor logos used for identification purposes only.
Introduction
Speaker

- Heikki Nousiainen
- CTO, co-founder @ Aiven, a cloud DBaaS company
- Previously: software architect - cloud transformation, distributed systems
- Open source user and fan since 1995

@hnousiainen
Aiven

- Independent Database as a Service provider
- Based in Helsinki and Boston
- 8 database systems available in 70+ regions around the world

https://aiven.io
@aiven_io
Motivation
You’ve all heard it,

Data is your most valuable asset
“Data is the new oil”
Data is disrupting every industry

...but let’s take a look at some actual uses
Motivation

Car-as-a-Sensor

Traffic and road condition detection & routing

Vacant parking space locator
Motivation

Welding Management
- Procedures
- Qualification verification
- 100% traceability
Motivation

Home / commercial automation

Smart Locks & Entry Controls

Environment sensing and management, lighting
Motivation

Predicting performance and proactively preventing downtime.

Pay-per-use models with SLA.

Fuel consumption management.
Challenges
Challenges

Area
- Liveliness
- Volume & Velocity
- Data/system lifespan
- Changing business requirements

Requirements
- Low latency / Real-time eventing
 - Interactive usage
 - Environmental awareness
 - Routing decisions
- Batch
 - Analytics
 - Reporting
 - Research
Challenges

Area

- Liveliness
- **Volume & Velocity**
- Data/system lifespan
- Changing business requirements

Requirements

- Billions of messages and terabytes of data 24/7
- 2013, 787 Dreamliner, 1TB data per flight. 150 units / year.
- 2018, Audi Concept, 4TB data per day per car. 2M units / year.
Challenges

Area
- Liveliness
- Volume & Velocity
- **Data/system lifespan**
- Changing business requirements

Requirements
- Production systems have long lifespans
 - Car ~15-20 years from design to disposal
 - Sea vessel 25-30 years
- Collected and consumed data differ
- Software / hardware upgrades
Challenges

Area
- Liveliness
- Volume & Velocity
- Data/system lifespan
- Changing business requirements

Requirements
- New services derived from data
- New sources/sinks for data
- Discontinued systems
- New experiments
- Legal landscape changes
- New/disbanded teams
- Acquisitions / integrations
Open Source
Open Source

- Open Source product development pace trumps that of any private undertaking
 - A lot of data management innovation happens in Open Source
 - Open Source is quick to absorb innovation from any source
 - The pragmatic evolutionary development cycles are efficient in improving quality

- Using Open Source guarantees continued access to business critical data
 - Avoid lock-in to a single vendor
 - Even with the 10 - 20 year lifespans
Data Pipelines - Old and New
Common components of a data pipeline

Typical parts of a data pipeline
- Data ingestion
- Filtering & Enrichment
- Routing
- Processing
- Querying / Visualization / Reporting
- Data warehousing
- Reprocessing capabilities

Typical requirements
- Scalability
 - Billions of messages and terabytes of data 24/7
- Availability and redundancy
 - Across physical locations
- Latency
 - Real-time / batch
- Adaptability / Platform support
“Traditional” data flow model

Web clients -> Public REST API -> OLTP DB

Reporting apps

Billing systems -> Report DB

Analytics

Microservices -> Metrics DB
“Traditional” data flow model

Web clients → Public REST API → Caches → OLTP DB

External clouds → Reporting apps → Billing systems → Data WH → Metrics DB

Analytics → Microservices
Message-centric data flow model

- Web clients
- REST App
- MQTT
- Reporting apps
- Custom Apps
- Analytics
- Microservices
- Messaging Bus / Router
- External clouds
- Metrics DB
- OLTP DB
- Caches
- Data WH
- Doc store

Building Data Pipelines with Open Source Components | Open Source Summit Japan 2018 | https://aiven.io
Message-centric data flow model

Web clients

REST App

MQTT

Custom Apps

Microservices

Reporting apps

Analytics

Metrics DB

OLTP DB

Caches

Data WH

Doc store

External clouds

Building Data Pipelines with Open Source Components | Open Source Summit Japan 2018 | https://aiven.io
Message-centric data flow model

- Web clients
- REST App
- MQTT
- Reporting apps
- Custom Apps
- Analytics
- Microservices
- Metrics DB
- OLTP DB
- Caches
- Data WH
- Doc store
- External clouds

Building Data Pipelines with Open Source Components | Open Source Summit Japan 2018 | https://aiven.io
Apache Kafka

Apache Kafka is an open source stream processing platform.

"The project aims to provide a unified, high-throughput, low-latency platform for handling real-time data feeds."

Originally developed by LinkedIn, open sourced in 2011, now a top-level Apache project. Nowadays used by e.g. New York Times, Pinterest, Zalando, Airbnb, Shopify, Spotify and many others for event streaming. [See https://kafka.apache.org/powered-by for more.]

Kafka excels as a centerpiece for event delivery, where a range of applications can produce and consume real-time event streams.

https://kafka.apache.org/
A key abstraction in Kafka is its commit log, where each consumer maintains its own position in the log. This allows clean decoupling of the producing and consuming processes.
Kafka-centric data flow model

Web clients

REST App

MQTT

Caches

Custom Apps

Microservices

Reporting apps

Analytics

Metrics DB

OLTP DB

Caches

Data WH

Doc store

External clouds

Building Data Pipelines with Open Source Components | Open Source Summit Japan 2018 | https://aiven.io
Kafka Connect

Framework for importing data from other systems and services - Sources - to Kafka and exporting to other services and systems - Sinks.

The framework makes it easy to create and share connectors in Open Source.

A host of connectors are available:

BigQuery, Cassandra, DynamoDB, Elasticsearch, Github, IOTHub / Azure, JDBC, JMS, Kinesis, PubSub / Google, MQTT, MySQL CDC, PostgreSQL CDC, RabbitMQ, Redshift, Redis, SalesForce, SAP, Solr, Splunk, SQS, Syslog, Twitter, Vertica
Databases in the Pipeline

- Specialized Open Source database technologies available for different use cases
- Consider the same requirements as for the streaming platform:
 - Access patterns: transactional, relational
 - Scalability
 - Reliability
 - Adaptability / Platform support / SDKs & Libraries
 - Available competencies
Databases in the Pipeline

- Web clients
- REST App
- MQTT
- Custom Apps
- Microservices
- Reporting apps
- Analytics

External clouds

Building Data Pipelines with Open Source Components | Open Source Summit Japan 2018 | https://aiven.io
Kafka Streams

- Kafka Streams is an SDK / library for building application that process data in real-time
- DSL for defining streams & processing steps
- Supports abstraction for stream of events, but also tables and state.
- Stateless and stateful transformations

```java
KStream<String, String> textLines = builder.stream("InputLinesTopic");
KTable<String, Long> wordCounts = textLines
    .flatMapValues(textLine -> Arrays.asList(textLine.toLowerCase().split("\W+")))
    .groupBy((key, word) -> word)
    .count("Counts");
wordCounts.to(Serdes.String(), Serdes.Long(), "WordsWithCountsTopic");
```
KSQL: SQL engine for Kafka

- KSQL allows performing continuous queries and transformation using SQL syntax
- Standalone service using Kafka APIs typically running as its own cluster next to Kafka

```
CREATE STREAM log_stream_origin
    (status bigint, path varchar) WITH
    (kafka_topic='log_stream', value_format='DELIMITED');

SELECT status, path
FROM log_stream_origin WHERE status >= 400;
```
Build or Buy
Data management is hard to do well

- Management of stateful systems requires specialized personnel and 24/7 response capability.
- Failures are difficult to predict and can have extremely high impact on business.
- Managed clouds services allow users to stay focused on their core business without worrying about software infrastructure.
- Open Source solutions allow one to move between in-house and managed offering.
Conclusions
Summary

● A lot of hype around data, but it’s still real deal and to be taken seriously
● The challenges with data management are both technical and temporal
● Open Source is the best bet to meet the data management challenges
● Kafka as the central component of a data pipeline helps clean up messy architectures
● A host of good Open Source database solutions can help to meet the data storage and access needs
● You can leverage a host of managed service providers or build your own capability
● With Open Source, you have the option to revisit that choice at any time
Thanks!

- https://aiven.io
- [@aiven_io](https://twitter.com/aiven_io)
- [@hnousiainen](https://twitter.com/hnousiainen)