NSA/CSS Research Directorate :: Advancing Intelligence Through Science

000110101001

Security in Zephyr and Fuchsia

Stephen Smalley and James Carter
Trust Mechanisms
Information Assurance (IA) Research
National Security Agency
August 27, 2018

1000

About Us

® Perform R&D in support of NSA's Information Assurance (IA)
mission to protect National Security Information and
Information Systems.

® Research and develop hardware and software security
architectures and mechanisms to facilitate trust.

® 25+ years of operating system security R&D
— DTMach, DTOS, Flask, ...

® First at NSA to create and release open source software
(SELinux, Dec 22 2000).

® Long history of open source contribution and collaboration.
= Linux, Xen, FreeBSD, Darwin, Android

00(

Zephyr and Fuchsia

®* Two emerging open source operating systems
* Targeting very different use cases

* With very different OS architectures
— Both from each other and from Linux

* We'll be examining:
— their OS architectures and security mechanisms

— prior and ongoing work to advance their security

— how they compare with Linux-based systems

100(

What Is Zephyr?

* Cross-architecture, vendor-neutral RTOS for loT devices

* Sponsored by Linux Foundation

* Targeting devices where Linux is not considered viable

— 32-bit microcontrollers ranging from 8kB RAM to several MB.

— Seeking to be a new “Linux” for little devices

* Security as a stated goal and focus

* https://www.zephyrproject.org

https://www.zephyrproject.org/

Zephyr: In the beginning

* Single executable, single address space OS
* Kernel as library linked into application

* All threads running in supervisor mode

* No memory protection, no virtual memory
* Typical for many RTOSes

* Focused on minimizing footprint, overhead

* Security efforts focused on development process, code auditing,
static analysis, update, crypto, etc not OS protection
mechanisms.

Zephyr: Motivation for OS protections

Increase difficulty of exploitation of software flaws.

Limit the damage from a single flaw.

Sandbox untrusted components.

Protect integrity of critical processing and data.
Enforce desired information flows.

Prevent leakage of sensitive data/keys.

Improve robustness.

00(

Zephyr: Credit Where Credit is Due

* Most of the Zephyr protection work has been

done by the core Zephyr developers,
particularly from Intel, Linaro and Synopsys.

* We'll call out some of our own specific
contributions along the way.

Zephyr: Hardware Limitations

* Most microcontrollers lack a MMU.

— No virtual memory support

* Some have a Memory Protection Unit (MPU).

— Limited number of discretely protected physical regions.

* Often as few as 8 distinct regions supported
— MPUs are very limited in their flexibility (pre-ARMv8-M).

* ARMvV7-M: Power-of-2 size, aligned to size

* NXP MPU only imposes modulo 32-byte restrictions

00(

Zephyr: Protection Design Constraints

* Initial focus on supporting typical microcontrollers.

— Can use a MMU if present, but must also work on MPU-only boards.

* Minimize changes to kernel APIs.

— Can't rewrite to use handles/file descriptors.

* Minimize and bound memory and runtime overheads.

— Do as much at build time as possible, preserve real-time guarantees.

* No impact on low end boards.

— Fully configurable, no overheads if disabled.

Zephyr: Basic Memory Protections

First appearing in v1.8, official in v1.9
Depends on hardware MPU or MMU support
Enforces RO/NX, stack depth overflow protections

Most work done at build and boot time only (runtime
support for stack depth overflow protections)

Our contribution: protection tests

— Modeled after subset of lkdtm tests in Linux from KSPP

— Detected bugs and regressions in Zephyr MPU drivers

— Now used as part of regression testing

00(

10

Zephyr: Userspace Support

Introduced for x86 in v1.10, for ARM and ARCinv1.11

Builds on memory protection support, requires MPU/MMU

Supports user mode threads with isolated memory

Our contribution: userspace tests

Verifies (some) security-relevant properties for user mode threads
Confirmed correctness of x86 implementation (wrt to properties)
Used to validate initial ARM and ARC userspace implementations

Now used as part of regression testing

11

Zephyr: Userspace Memory Model

* Single executable and address space OS (still)

* User threads, not full processes

Explicitly launched by application code as user threads
RX/RO to text / read-only data, RW to per-thread stack

Memory domain abstraction for programmer-defined
explicit shared memory regions among user threads.

Optional application memory feature to allow user
threads to access application global variables.

00

12

Zephyr: Userspace Kernel Interface

* Kernel object references

— Addresses as “handles” to avoid API rewrite

— Kernel validates addresses via perfect hash for static objects, red-black tree for dynamic.
* Object permissions model

— User threads must first be granted permissions to an object.
— Optionally inherited from parent to child.

— All-or-none, no per-operation or read/write distinctions.

* System calls

— Transparent build-time and runtime redirection of API calls.
— Only a select subset of kernel APIs exposed as system calls, vetted for trust.

— Helpers for argument validation.

13

Zephyr: Application Memory

* Original application memory feature limited to
all-or-nothing access.

— All user threads can access all application global variables.

* High burden on application developers to
leverage memory domain mechanism.

— Manually organize application global variable memory layout
to meet (MPU-specific) size/alighment restrictions.

— Manually define and assign memory partitions and domains.

14

Zephyr: App Shared Memory

New feature coming in v1.13, contributed by us.

Provides a (more) developer-friendly way of grouping
application globals based on desired protections.

Automatically generates linker script, section
markings, memory partition/domain structures.

Provides helpers to ease application coding.

No panacea, but a step forward.

15

Zephyr: App Shared Memory Example

Threads
ciphertext_untrusted enigma_app cleartext_untrusted
~ 7 \\ // '.\
AN Z AN Z |
memS5S mem4 mem3 mem?2 mem 1
Memory

Notes:

mem1l and memb5 are untrusted thread local memories.
mem2 and mem4 provide a common data buffer between threads.
mem3 provides a secure location for the enigma state information.

1000

16

Zephyr: Areas for Future Work

MPU virtualization

Compartmentalization of program text and rodata

Full support for multiple applications and program loading
Kernel self-protection features ala KSPP

Leveraging ARMv8-M features (more flexible MPU
configuration, TrustZone-M support) to increase security

Some form of MAC suited to RTOSes (e.g. build-time
application partitioning/pipelining based on config).

17

Zephyr vs Linux OS security

RO/NX memory protections
Stack depth overflow prevention
Stack buffer overflow detection
No ASLR

Kernel code considered trusted
Userspace threads, not processes

Kernel/user boundary still being fully
fleshed out

(Generally) Single application

Highly dependent on particular SoC,
config, application developer

RO/NX memory protecitons
Stack depth overflow prevention
Stack buffer overflow detection
Kernel and userspace ASLR

Mitigations for many kernel
vulnerabilities via KSPP

Process isolation
Mature kernel/user boundary
Multi-application/user/tenant

Generally independent of particular
arch/SoC and application

18

Zephyr Security: Other Resources

* ELC / OpenloT NA 2018 presentation by
Andrew Boie,
https://schd.ws/hosted_files/elciotna18/d
b/Boie%20-%20Retrofitting%20Zephyr%20Memo
ry%20Protection.pdf

* Zephyr usermode docs,
http://docs.zephyrproject.org/kernel/userm
ode/usermode.html

11000

19

https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
http://docs.zephyrproject.org/kernel/usermode/usermode.html
http://docs.zephyrproject.org/kernel/usermode/usermode.html

What is Fuchsia?

®* Microkernel-based operating system

* Primarily developed by Google, but open source

— Rumored to be replacement for Android and/or
ChromeQS

* Targets modern hardware (phones, laptops)
— 64-bit Intel and ARM application processors

* (Object) Capability-based security

® Work in progress

20

Fuchsia: The Zircon Microkernel

* |nitially derived from Little Kernel (LK)
— Embedded kernel / RTOS similar to FreeRTOS

— Used in Android bootloader, Trusty TEE

* Extended/rewritten to be a microkernel

— Support for 64-bit, user mode / process model,
object capabilities, IPC, virtualization, ...

® The only part of Fuchsia that runs in supervisor mode

— Drivers, filesystem, network run in user mode!

100(

21

Fuchsia Security Mechanisms

®* Microkernel security primitives
— (regular) Handles

— Resource handles
— Job policy
— vDSO enforcement

® Userspace mechanisms

— Namespaces

— Sandboxing

1000

22

Fuchsia: (Regular) Handles

Only way (usually) that userspace can access kernel objects
— They are object capabilities

— Uses a push model where client creates handle and passes it to a server

Per-process (like file descriptors) and unforgeable

|dentify both the object and a set of access rights to the object
— duplicate, transfer, read, write, execute, map, get_property,
set_property, enumerate, destroy, ...

Can be duplicated with equal or lesser rights (if allowed duplicate)

Can be passed across IPC (if allowed transfer)

Can be used to obtain handles to “child” objects (object_get_child) with
equal or lesser rights (if allowed enumerate)

23

Fuchsia: (Regular) Handles

* Good:
— Separate rights for propagation vs use

— Separate rights for different operations
— Ability to reduce rights through handle duplication

* Of concern:
— object_get_child()

— Leak of root job handle (e.g. /dev/misc/sysinfo)
— Refining default rights down to least privilege

— Handle propagation and revocation

— Operations that do not check rights

— Unimplemented rights

1000

24

Fuchsia: Resource Handles

* Variant of handles for platform resources

— memory mapped I/O, I/0 port, IRQ, hypervisor guests
— specify allowed resource kind and optionally range

- “root” resource handle allows access to all resources

* Can be used to obtain more restrictive resource
handles

* root resource handle provided to initial process
(userboot)

100(

25

Fuchsia: Resource Handles

* Good:
— Supports fine-grained, hierarchical resource
restrictions

* Of concern:
— Coarse granularity of root resource checks

— Leak of root resource handle (e.g. /dev/misc/sysinfo)
— Handle propagation and revocation

— Refining root resource down to least privilege

26

Fuchsia: Job Policy

Every process is part of a job
Jobs can have child jobs (nesting)

— Root job contains all other jobs/processes

Job policy applied to all processes within the job

— But can only be set on an empty job (no processes yet)

Policies inherited from parent and can only be made more
restrictive

Policies include error handling behavior, object creation, and

mapping of WX memory

27

Fuchsia: Job Policy

* Good:
- Fine-grained object creation policies (per type)

— Supports hierarchical job policies

* Of concern:
— WX policy: not yet implemented and may pose problems
for hierarchy

— Inflexible mechanism
— Refining job policies down to least privilege

* Currently only used for device drivers and fuchsia job

100(

28

Fuchsia: vDSO Enforcement

* Goal: vDSO is the only means for invoking system calls
* vDSO is fully read-only

* vDSO mapping constrained by the kernel
— Can only occur once per process

— Must cover entire vDSO

— Can't be modified/removed/overwritten

System call entry must occur from expected location in vDSO
vDSO variants can expose a subset of the system call interface

29

Fuchsia: vDSO Enforcement

* Good:
— Limits kernel attack surface

— Enforces the use of the public ABI
— Supports per-process system call restrictions

— vDSO code is NOT trusted by kernel which fully validates system call
arguments

* Of concern:
— Potential for tampering with or bypassing the vDSO

* process_write_memory()
— limited flexibility, e.g. as compared to seccomp

100(

30

Fuchsia: Namespaces and Sandboxing

Namespace is a collection of objects that can be
enumerated and accessed by name.

— Composite hierarchy of services, files, devices

Per component, not global

Constructed by environment which instantiates a
component

Used and extended by components

Sandbox is the configuration of a process’s namespace
created based on its manifest

100(

31

Fuchsia: Namespace/Sandboxing

* Good:
— No global namespace

— Object reachability determined by initial namespace
* Of concern:
— Sandbox only for application packages (and not system services)
— Namespace and sandbox granularity
— No independent validation of sandbox configuration
— Currently uses global /data and /tmp

* Docs do mention per-package /data and /tmp (future?)

32

Fuchsia: Bootstrap / Process Creation

userboot creates devmgr and exits (not like init)

devmgr creates zircon drivers and services, including svchost.

devmgr creates fuchsia job and appmar.

svchost provides process creation facility for fuchsia processes

— But caller must supply all kernel handles for new process.

* appmgr provides component creation facility

— But appmagr is not allowed to create processes (because of the job policy of fuchsia
job)

— Caller identifies component, appmgr constructs namespace based on sandbox,
uses svchost to create the actual Zircon process.

33

Fuchsia: A Case for MAC

* A MAC framework could address gaps left by Fuchsia's existing
mechanisms, e.g.
— Control propagation, support revocation, apply least
privilege

— Support finer-grained resource checks, generalize job policy
— Validate namespace/sandbox, support finer granularity

* |t could also provide a unified framework for defining,
enforcing, and validating security goals for Fuchsia.

— As it has in Android.

34

Fuchsia: Back to the Future

® Our early work was in the context of capability-
based microkernel operating systems.

— Mach (DTMach/DTOS) and Fluke (Flask)
®* We've revisited MAC & capabilities repeatedly.

— SELinux & Unix file descriptors
— SE Darwin & Mach ports
— Android & Binder

35

Fuchsia & MAC: Design Options

* Entirely userspace, no microkernel support

— Build on top of existing capability-based mechanism

* Mostly userspace, limited microkernel support

— Minimalist extensions to capability-based mechanism

* Security policy logic in userspace, full
microkernel enforcement for its objects

— As in our prior work (DTMach, DTOS, Flask, SE Darwin)

36

Full Kernel Support for MAC

* The Flask security architecture,
http://www.cs.utah.edu/flux/flask

* Userspace security server provides labeling and access
decisions.

* Object managers bind labels to objects, enforce security
server decisions

— Both microkernel and userspace servers

* Microkernel provides peer labeling, fine-grained control
over transfer and use.

100(

37

http://www.cs.utah.edu/flux/flask

Flask Approach to MAC: Benefits

* Assurable implementation

Direct support for labeling and access control in microkernel

Capability leak by userspace component can be mitigated by
microkernel checks

Reduced assurance burden on userspace components

Disaggregated TCB - userspace object managers, limited trust in each

* Centralized security policy

— Amenable to analysis, audit, management

* Support for flexible, fine-grained access control

38

Current Work

* Investigating creation and flow of handles
among Fuchsia components

* Analyzing reachability of security-critical
handles/objects in the system

* Assessing effectiveness of existing mechanisms

* Exploring options for providing MAC-like
properties

00(

39

Current Work - Examples

* VMO

— [vdso/full]|userboot| * |bin/devmgr |+ | bin/devmgr| * |
svchost|+|svchost| * |sh

* Resource

— root-resource|userboot| * | bin/devmgr|+|bin/devmgr| * |
devhost:sys

* Channel

— <2407-2408> | bin/devmgr | * | devhost:pci#3:8086:100e
— <2407-2408> | bin/devmgr | * | svchost

1000

40

Fuchsia vs Linux OS security

RO/NX memory protections
Stack depth overflow prevention
Stack buffer overflow detection
Kernel and userspace ASLR
Process isolation

Self-protection not examined yet
Small, decomposed TCB

Object capabilities

RO/NX memory protections
Stack depth overflow prevention
Stack buffer overflow detection
Kernel and userspace ASLR
Process isolation

Mitigations for many kernel
vulnerabilities

Large, monolithic TCB
DAC, MAC

41

Wrap Up

* Zephyr and Fuchsia are each seeking to
advance the state of OS security for their
respective domains.

* Much work remains to be done for the
security of both of them.

* Get Involved!

42

Questions?

* Stephen: sds@tycho.nsa.gov

* James: jwcart2@tycho.nsa.gov

1110001
43

mailto:sds@tycho.nsa.gov
mailto:jwcart2@tycho.nsa.gov

