
Security in Zephyr and Fuchsia

Stephen Smalley and James Carter

Trust Mechanisms

Informaton Assurance (IA) Research

Natonal Security Ag ency

Aug ust 27, 2018

2

About Us
• Perform R&D in support of NSA's Informaton Assurance (IA)

mission to protect Natonal Security Informaton and
Informaton Systems.

• Research and develop hardware and sofware security
architectures and mechanisms to facilitate trust.

• 25+ years of operatng system security R&D
– DTMach, DTOS, Flask, ...

• First at NSA to create and release open source sofware
(SELinux, Dec 22 2000).

• Long history of open source contributon and collaboraton.
– Linux, Xen, FreeBSD, Darwin, Android

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

3

Zephyr and Fuchsia
• Two emerg ing open source operatng systems
• Targ etng very diferent use cases
• With very diferent OS architectures

– Both from each other and from Linux

• We'll be examining :

– their OS architectures and security mechanisms

– prior and ong oing work to advance their security

– how they compare with Linux-based systems

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

4

What is Zephyr?
● Cross-architecture, vendor-neutral RTOS for IoT devices

● Sponsored by Linux Foundaton

● Targ etng devices where Linux is not considered viable
– 32-bit microcontrollers rang ing from 8kB RAM to several MB.

– Seeking to be a new “Linux” for litle devices

● Security as a stated g oal and focus

● htps://www.zephyrproject.org

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

https://www.zephyrproject.org/

5

Zephyr: In the beginning
● Sing le executable, sing le address space OS

● Kernel as library linked into applicaton

● All threads running in supervisor mode

● No memory protecton, no virtual memory

● Typical for many RTOSes

● Focused on minimizing footprint, overhead

● Security eforts focused on development process, code auditng ,
statc analysis, update, crypto, etc not OS protecton
mechanisms.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

6

Zephyr: Motivation for OS protections
● Increase difculty of exploitaton of sofware faws.

● Limit the damag e from a sing le faw.

● Sandbox untrusted components.

● Protect integ rity of critcal processing and data.

● Enforce desired informaton fows.

● Prevent leakag e of sensitve data/keys.

● Improve robustness.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

7

Zephyr: Credit Where Credit is Due
● Most of the Zephyr protecton work has been

done by the core Zephyr developers,
partcularly from Intel, Linaro and Synopsys.

● We'll call out some of our own specifc
contributons along the way.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

8

Zephyr: Hardware Limitations
● Most microcontrollers lack a MMU.

– No virtual memory support

● Some have a Memory Protecton Unit (MPU).
– Limited number of discretely protected physical reg ions.

● Ofen as few as 8 distnct reg ions supported

– MPUs are very limited in their fexibility (pre-ARMv8-M).

● ARMv7-M: Power-of-2 size, alig ned to size

● NXP MPU only imposes modulo 32-byte restrictons

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

9

Zephyr: Protection Design Constraints
● Inital focus on supportng typical microcontrollers.

– Can use a MMU if present, but must also work on MPU-only boards.

● Minimize chang es to kernel APIs.
– Can't rewrite to use handles/fle descriptors.

● Minimize and bound memory and runtme overheads.
– Do as much at build tme as possible, preserve real-tme g uarantees.

● No impact on low end boards.
– Fully confg urable, no overheads if disabled.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

10

Zephyr: Basic Memory Protections
● First appearing in v1.8, ofcial in v1.9

● Depends on hardware MPU or MMU support

● Enforces RO/NX, stack depth overfow protectons

● Most work done at build and boot tme only (runtme
support for stack depth overfow protectons)

● Our contributon: protecton tests
– Modeled afer subset of lkdtm tests in Linux from KSPP

– Detected bug s and reg ressions in Zephyr MPU drivers

– Now used as part of reg ression testng

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

11

Zephyr: Userspace Support
● Introduced for x86 in v1.10, for ARM and ARC in v1.11

● Builds on memory protecton support, requires MPU/MMU

● Supports user mode threads with isolated memory

● Our contributon: userspace tests
– Verifes (some) security-relevant propertes for user mode threads

– Confrmed correctness of x86 implementaton (wrt to propertes)

– Used to validate inital ARM and ARC userspace implementatons

– Now used as part of reg ression testng

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

12

Zephyr: Userspace Memory Model
● Sing le executable and address space OS (stll)

● User threads, not full processes
– Explicitly launched by applicaton code as user threads

– RX/RO to text / read-only data, RW to per-thread stack

– Memory domain abstracton for prog rammer-defned
explicit shared memory reg ions among user threads.

– Optonal applicaton memory feature to allow user
threads to access applicaton g lobal variables.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

13

Zephyr: Userspace Kernel Interface
● Kernel object references

– Addresses as “handles” to avoid API rewrite

– Kernel validates addresses via perfect hash for statc objects, red-black tree for dynamic.

● Object permissions model
– User threads must frst be g ranted permissions to an object.

– Optonally inherited from parent to child.

– All-or-none, no per-operaton or read/write distnctons.

● System calls
– Transparent build-tme and runtme redirecton of API calls.

– Only a select subset of kernel APIs exposed as system calls, veted for trust.

– Helpers for arg ument validaton.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

14

Zephyr: Application Memory
● Orig inal applicaton memory feature limited to

all-or-nothing access.
– All user threads can access all applicaton g lobal variables.

● Hig h burden on applicaton developers to
leverag e memory domain mechanism.
– Manually org anize applicaton g lobal variable memory layout

to meet (MPU-specifc) size/alig nment restrictons.

– Manually defne and assig n memory parttons and domains.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

15

Zephyr: App Shared Memory
● New feature coming in v1.13, contributed by us.

● Provides a (more) developer-friendly way of g rouping
applicaton g lobals based on desired protectons.

● Automatcally g enerates linker script, secton
marking s, memory partton/domain structures.

● Provides helpers to ease applicaton coding .

● No panacea, but a step forward.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

16

Zephyr: App Shared Memory Example

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

17

Zephyr: Areas for Future Work
● MPU virtualizaton

● Compartmentalizaton of prog ram text and rodata

● Full support for multple applicatons and prog ram loading

● Kernel self-protecton features ala KSPP

● Leverag ing ARMv8-M features (more fexible MPU
confg uraton, TrustZone-M support) to increase security

● Some form of MAC suited to RTOSes (e.g . build-tme
applicaton parttoning /pipelining based on confg).

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

18

Zephyr vs Linux OS security

● RO/NX memory protectons

● Stack depth overfow preventon

● Stack bufer overfow detecton

● No ASLR

● Kernel code considered trusted

● Userspace threads, not processes

● Kernel/user boundary stll being fully
feshed out

● (Generally) Sing le applicaton

● Hig hly dependent on partcular SoC,
confg , applicaton developer

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

● RO/NX memory protecitons

● Stack depth overfow preventon

● Stack bufer overfow detecton

● Kernel and userspace ASLR

● Mitg atons for many kernel
vulnerabilites via KSPP

● Process isolaton

● Mature kernel/user boundary

● Mult-applicaton/user/tenant

● Generally independent of partcular
arch/SoC and applicaton

19

Zephyr Security: Other Resources
● ELC / OpenIoT NA 2018 presentaton by

Andrew Boie,
htps://schd.ws/hostedsfles/elciotna18/d
b/Boie%20-%20Retrofing %20Zephyr%20Memo
ry%20Protecton.pdf

● Zephyr usermode docs,
htp://docs.zephyrproject.org /kernel/userm
ode/usermode.html

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
https://schd.ws/hosted_files/elciotna18/db/Boie%20-%20Retrofitting%20Zephyr%20Memory%20Protection.pdf
http://docs.zephyrproject.org/kernel/usermode/usermode.html
http://docs.zephyrproject.org/kernel/usermode/usermode.html

20

What is Fuchsia?

• Microkernel-based operatng system
• Primarily developed by Goog le, but open source

– Rumored to be replacement for Android and/or
ChromeOS

• Targ ets modern hardware (phones, laptops)
– 64-bit Intel and ARM applicaton processors

• (Object) Capability-based security

• Work in prog ress

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

21

Fuchsia: The Zircon Microkernel
• Initally derived from Litle Kernel (LK)

– Embedded kernel / RTOS similar to FreeRTOS

– Used in Android bootloader, Trusty TEE

• Extended/rewriten to be a microkernel

– Support for 64-bit, user mode / process model,
object capabilites, IPC, virtualizaton, ...

• The only part of Fuchsia that runs in supervisor mode

– Drivers, flesystem, network run in user mode!

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

22

Fuchsia Security Mechanisms
• Microkernel security primitves

– (reg ular) Handles

– Resource handles

– Job policy

– vDSO enforcement

• Userspace mechanisms

– Namespaces

– Sandboxing

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

23

Fuchsia: (Reg ular) Handles
• Only way (usually) that userspace can access kernel objects

– They are object capabilites

– Uses a push model where client creates handle and passes it to a server

• Per-process (like fle descriptors) and unforg eable

• Identfy both the object and a set of access rig hts to the object
– duplicate, transfer, read, write, execute, map, g etsproperty,

setsproperty, enumerate, destroy, ...

• Can be duplicated with equal or lesser rig hts (if allowed duplicate)

• Can be passed across IPC (if allowed transfer)

• Can be used to obtain handles to “child” objects (objectsg etschild) with
equal or lesser rig hts (if allowed enumerate)

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

24

Fuchsia: (Reg ular) Handles
• Good:

– Separate rig hts for propag aton vs use

– Separate rig hts for diferent operatons

– Ability to reduce rig hts throug h handle duplicaton

• Of concern:
– objectsg etschild()

– Leak of root job handle (e.g . /dev/misc/sysinfo)

– Refning default rig hts down to least privileg e

– Handle propag aton and revocaton

– Operatons that do not check rig hts

– Unimplemented rig hts

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

25

Fuchsia: Resource Handles

● Variant of handles for platorm resources
– memory mapped I/O, I/O port, IRQ, hypervisor g uests

– specify allowed resource kind and optonally rang e

– “root” resource handle allows access to all resources

● Can be used to obtain more restrictve resource
handles

● root resource handle provided to inital process
(userboot)

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

26

Fuchsia: Resource Handles

• Good:
– Supports fne-g rained, hierarchical resource

restrictons

• Of concern:
– Coarse g ranularity of root resource checks

– Leak of root resource handle (e.g . /dev/misc/sysinfo)

– Handle propag aton and revocaton

– Refning root resource down to least privileg e

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

27

Fuchsia: Job Policy
● Every process is part of a job

● Jobs can have child jobs (nestng)
– Root job contains all other jobs/processes

● Job policy applied to all processes within the job
– But can only be set on an empty job (no processes yet)

● Policies inherited from parent and can only be made more
restrictve

● Policies include error handling behavior, object creaton, and
mapping of WX memory

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

28

Fuchsia: Job Policy

• Good:
– Fine-g rained object creaton policies (per type)

– Supports hierarchical job policies

• Of concern:
– WX policy: not yet implemented and may pose problems

for hierarchy

– Infexible mechanism

– Refning job policies down to least privileg e

● Currently only used for device drivers and fuchsia job

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

29

Fuchsia: vDSO Enforcement

• Goal: vDSO is the only means for invoking system calls

• vDSO is fully read-only

• vDSO mapping constrained by the kernel
– Can only occur once per process

– Must cover entre vDSO

– Can't be modifed/removed/overwriten

• System call entry must occur from expected locaton in vDSO

• vDSO variants can expose a subset of the system call interface

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

30

Fuchsia: vDSO Enforcement

• Good:
– Limits kernel atack surface

– Enforces the use of the public ABI

– Supports per-process system call restrictons

– vDSO code is NOT trusted by kernel which fully validates system call
arg uments

• Of concern:

– Potental for tampering with or bypassing the vDSO

● processswritesmemory()
– limited fexibility, e.g . as compared to seccomp

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

31

Fuchsia: Namespaces and Sandboxing
● Namespace is a collecton of objects that can be

enumerated and accessed by name.
– Composite hierarchy of services, fles, devices

● Per component, not g lobal

● Constructed by environment which instantates a
component

● Used and extended by components

● Sandbox is the confg uraton of a process’s namespace
created based on its manifest

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

32

Fuchsia: Namespace/Sandboxing

• Good:
– No g lobal namespace

– Object reachability determined by inital namespace

• Of concern:

– Sandbox only for applicaton packag es (and not system services)

– Namespace and sandbox g ranularity

– No independent validaton of sandbox confg uraton

– Currently uses g lobal /data and /tmp

● Docs do menton per-packag e /data and /tmp (future?)

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

33

Fuchsia: Bootstrap / Process Creaton
● userboot creates devmg r and exits (not like init)

● devmg r creates zircon drivers and services, including svchost.

● devmg r creates fuchsia job and appmg r.

● svchost provides process creaton facility for fuchsia processes
– But caller must supply all kernel handles for new process.

● appmg r provides component creaton facility
– But appmg r is not allowed to create processes (because of the job policy of fuchsia

job)

– Caller identfes component, appmg r constructs namespace based on sandbox,
uses svchost to create the actual Zircon process.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

34

Fuchsia: A Case for MAC

• A MAC framework could address g aps lef by Fuchsia's existng
mechanisms, e.g .
– Control propag aton, support revocaton, apply least

privileg e

– Support fner-g rained resource checks, g eneralize job policy

– Validate namespace/sandbox, support fner g ranularity

• It could also provide a unifed framework for defning ,
enforcing , and validatng security g oals for Fuchsia.

– As it has in Android.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

35

Fuchsia: Back to the Future

• Our early work was in the context of capability-
based microkernel operatng systems.
– Mach (DTMach/DTOS) and Fluke (Flask)

• We've revisited MAC & capabilites repeatedly.

– SELinux & Unix fle descriptors

– SE Darwin & Mach ports

– Android & Binder

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

36

Fuchsia & MAC: Desig n Optons

● Entrely userspace, no microkernel support
– Build on top of existng capability-based mechanism

● Mostly userspace, limited microkernel support
– Minimalist extensions to capability-based mechanism

● Security policy log ic in userspace, full
microkernel enforcement for its objects
– As in our prior work (DTMach, DTOS, Flask, SE Darwin)

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

37

Full Kernel Support for MAC
● The Flask security architecture,

htp://www.cs.utah.edu/fux/fask

● Userspace security server provides labeling and access
decisions.

● Object manag ers bind labels to objects, enforce security
server decisions
– Both microkernel and userspace servers

● Microkernel provides peer labeling , fne-g rained control
over transfer and use.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

http://www.cs.utah.edu/flux/flask

38

Flask Approach to MAC: Benefits
● Assurable implementaton

– Direct support for labeling and access control in microkernel

– Capability leak by userspace component can be mitg ated by
microkernel checks

– Reduced assurance burden on userspace components

– Disag g reg ated TCB - userspace object manag ers, limited trust in each

● Centralized security policy
– Amenable to analysis, audit, manag ement

● Support for fexible, fne-g rained access control

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

39

Current Work

● Investg atng creaton and fow of handles
among Fuchsia components

● Analyzing reachability of security-critcal
handles/objects in the system

● Assessing efectveness of existng mechanisms

● Exploring optons for providing MAC-like
propertes

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

40

Current Work - Examples
● VMO

– [vdso/full]|userboot|*|bin/devmg r|+|bin/devmg r|*|
svchost|+|svchost|*|sh

● Resource

– root-resource|userboot|*|bin/devmg r|+|bin/devmg r|*|
devhost:sys

● Channel

– <2407-2408>|bin/devmg r|*|devhost:pci#3:8086:100e

– <2407-2408>|bin/devmg r|*|svchost

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

41

Fuchsia vs Linux OS security

● RO/NX memory protectons

● Stack depth overfow preventon

● Stack bufer overfow detecton

● Kernel and userspace ASLR

● Process isolaton

● Self-protecton not examined yet

● Small, decomposed TCB

● Object capabilites

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

● RO/NX memory protectons

● Stack depth overfow preventon

● Stack bufer overfow detecton

● Kernel and userspace ASLR

● Process isolaton

● Mitg atons for many kernel
vulnerabilites

● Larg e, monolithic TCB

● DAC, MAC

42

Wrap Up

● Zephyr and Fuchsia are each seeking to
advance the state of OS security for their
respectve domains.

● Much work remains to be done for the
security of both of them.

● Get Involved!

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

43

Questons?

● Stephen: sds@tycho.nsa.g ov

● James: jwcart2@tycho.nsa.g ov

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

mailto:sds@tycho.nsa.gov
mailto:jwcart2@tycho.nsa.gov

