State of Container Networking
Where are we at and where are we going?

Frederick F. Kautz IV / Red Hat

@ffkiv
Containers

• Virtualization Methodology
 — OS Kernel allows for multiple isolated user space
 — Isolation by features such as cgroups and namespaces

• Cgroups provides ability to
 — limit, account and isolate resource usage of process groups
 — prioritize resources and control that includes freeze, checkpoint and restarts

• Namespace
 — partitions key kernel structure to create environment that include process, network, IPC, mount points, hostname and user
Container Virtualization Benefits

• Density - More containers than VMs in a single host
• Speed - Starting up a container can take less than a second
• Low overhead Management - Lower weight orchestration
• Portability - Encapsulating an application and its configuration simplifies the migration process
• Options - Variety of different Open Source standards
Container Management Landscape

- Nomad
- Kubernetes
- Apache Mesos
- Red Hat OpenShift
- Docker Swarm
Container Networking Types

- None
- Bridge
- Host
- Overlay
- Underlay
Container Networking Landscape

- cilium
- Contiv
- Big Cloud Fabric
- Google Compute Engine
- Open vSwitch
- flannel
- nuage networks
- tungsten fabric
- PROJECT CALICO
- OVN
- weave.net
- OPEN DAYLIGHT
Major Types of SDNs

• Dataplane OSI Level
 – L2 - MAC Address, L2 Switches
 – L3 - IP Address, IP Routers
 – L4 - TCP/UDP Ports, Load Balancers
 – L7 - Application aware, Service Mesh

• Control plane
 – Static
 – Centralized
 – Distributed

• Management plane
 – CNI
 – libnetwork
<table>
<thead>
<tr>
<th>Contiv</th>
<th>Flannel</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multi host policy based networking</td>
<td>• Allocates a separate subnet per host</td>
</tr>
<tr>
<td>• Multiple backend drivers:</td>
<td>• Overlay network between each host</td>
</tr>
<tr>
<td>– L2 (VLAN)</td>
<td>• K8S API or etcd for configuration management</td>
</tr>
<tr>
<td>– L3 (BGP)</td>
<td>• No policy, pair with calico</td>
</tr>
<tr>
<td>– Overlay (VXLAN)</td>
<td></td>
</tr>
<tr>
<td>– Cisco SDN (ACI)</td>
<td></td>
</tr>
<tr>
<td>• Policy support</td>
<td></td>
</tr>
</tbody>
</table>
Weave

- Uses standard port numbers for containers
- Container IP discovered from DNS query on container name
- Two connection modes:
 - Sleeve mode
 - UDP channel to traverse IP packets from containers
 - Fastdp mode
 - VXLAN based solution

Calico

- Policy focused
- Pure layer 3 approach
- Also implements BGP for routing, for scaling
- Option to use stateless IPinIP overlay
Contrail
- Policy support
- Gateway services
- SNAT
- ECMP load balancing in services
- Ingress load balancing

OpenDaylight
- Openstack Kuryr Integration
- POD L2 connectivity same node
- POD L3 connectivity multi-node
- Service connectivity WIP
OVN

- Creates logical switches and routers
- Reference architecture for OVS based container networking solutions
- Lightweight control plane with essential features
- Geneve based
VPP
- Packets processed in batch through nodes in a Directed Graph
- Routing decisions in Userspace
- Attempts to eliminate cache misses
- Supports DPDK

OpenVSwitch
- Dataplane for many production quality SDN solutions
- Packets processed rules in tables
- Routing decisions in Kernel
- Configurable through OVSDB and OpenFlow
- Extensive set of built in features
- Supports DPDK
Recent Advances
eBPF
- eBPF support in kernel expanded
 - bpfilter
- Historically used netfilter hook join-points
- XDP added eBPF before memory allocation for received packets
- Cilium added eBPF data interception before Linux allocation occurs

Shared Memory
- VPP based shared memory driver
- Userspace solution
- App can be modified to use libmemif directly
- LD_PRELOAD to redirect socket
Service Mesh
• Layer 7 Load Balancer & Service Discovery
• Focus primarily on MicroServices
• Load Balancing
• Failure recovery
• Graceful function degradation
• Distinct from SDN

K8s on Edge
• Starting to see real world deployments
 – Chic-Fil-A running 2000 K8s clusters, one for each store
• K8s-based edge data centers
 – Vapor.io
• SDNs expanding beyond network virtualizer to support edge
5G CNFs on K8s

• New term, Cloud Native Network Functions (CNFs)
• VNF to CNF not straightforward
• May have virtualized components
 – Why? Kernel modules!
• Moved from talking about CNFs to building infrastructure
• Despite new efforts, CNFs still have many open questions

Network Service Mesh

• Cloud-Native Controller
• Matchmaking for cross-connects
 – Pod -> Pod
 – Dataplane -> Dataplane
 – Pod -> Device
• Allows non-IP payloads
• Choose your favorite dataplane
• Implements SFC
• Doesn’t require changes K8s
Multus CNI
- Coordinates multiple CNI plugins why may be backed by multiple SDNs
- Executes multiple CNI plugins for a single pod
- End result may be multiple interfaces

IPv6
- K8S supports IPv6-only clusters – No mixed IPv6 + IPv4 cluster
- Segment Routing (IETF)
- Work here continues to progress
• Several working groups:
 • CNCF CNI
 • Network SIG
 • Network Plumbing Working Group, sub group of K8s sig-network
 • Network Service Mesh
 • Istio Working Group
• CNCF driving CNF definition
• ONAP
• OpenDaylight COE Project
Current work

- Increase diversity in container networking
 - SR-IOV
 - Memif
 - eBPF bypass
- IPV6-only Deployments
- Multi-Endpoint (includes Multi-Interface)
- More eBPF support
- Telco involvement
- VPP
Cloud Native Landscape

This landscape is intended as a map through the previously uncharted terrain of cloud native technologies. There are many routes to deploying a cloud-native application, with CNCF Projects representing a particularly well-traveled path.
Future Trends

• Kubernetes in Telco
• Kubernetes in more advanced enterprise (beyond network virt)
• Edge Containers (Better interop between SDN + Schedulers)
• Smarter Multi-Site Interop (Cloud <-> Cloud / Cloud <-> OnPrem)
• Service Mesh + SDN Interop
• Network Service Mesh + SDN Interop
• Openstack Services Managed by Kubernetes
• More kernel bypass with eBPF
• SDN use P4 advanced use cases (PISA chips become common)
References

• google-cloud/understanding-kubernetes-networking

• Container-landscape

• Hackers-guide-kubernetes-networking

• ligato/container-networking-overview