
© 2018 Arm Limited

Arm Timers
and Fire!

KVM Forum 2018

Christoffer Dall
christoffer.dall@arm.com

© 2018 Arm Limited 2

Introduction

KVM/Arm currently provides basic timekeeping functionality:

• VMs can read a counter to measure passing of time

• VMs can program and cancel timers

Without trapping to the hypervisor. Yay!

© 2018 Arm Limited 3

What are we missing

No accounting for pausing the VM or suspending the system:
• Results in warnings from the guest OS

No accounting for stolen time:
• Guest processes are starved

• Warnings from the guest OS when oversubscribing physical CPUs

Migrating to a new physical machine with a different counter frequency:
• Timekeeping not aligned with software expectations

© 2018 Arm Limited 4

Background – Arm Generic Timers Architecture

Also known as the “Arch Timers” or “Architected Timers”

In Armv8.0, we have:

• The physical counter

• The virtual counter

• Four timers:
• EL3 Physical Timer (for Secure World – not relevant for KVM)

• EL2 Physical Timer (for the hypervisor)

• EL1 Physical Timer (for the OS)

• EL1 Virtual Timer (for the OS)

© 2018 Arm Limited 5

Background – Arm Generic Timers Architecture

In Armv8.1, with the Virtualization Host Extensions (VHE), we have:

• The physical counter

• The virtual counter

• Five timers:
• EL3 Physical Timer (for Secure World – not relevant for KVM)

• EL2 Physical Timer (for the hypervisor)

• EL2 Virtual Timer (for the hypervisor)

• EL1 Physical Timer (for the OS)

• EL1 Virtual Timer (for the OS)

© 2018 Arm Limited 6

Background – Arm Generic Timers Architecture
What is a Counter and a Timer?

Counter
Simple 64-bit value monotonically
increasing at a per-system specific
frequency.

Timer
A device that triggers an event after some
time.

Each timer has:

• CVAL (Compare Value)

• CTL (Control Register:
enable, mask, status)

A timer is associated with a counter.

Asserts output line when:

Counter >= CVAL

© 2018 Arm Limited 7

The Counters

Physical Counter is 64-bit monotonic counter

Accessed via CNTPCT_EL0

Trappable to EL1 and EL2

Virtual Counter = Physical Counter - Offset

Offset is controlled by EL2 (Hypervisor) using CNTVOFF_EL2

Accessed via CNTVCT_EL0

• Optionally trapped by OS

• VHE hypervisors read CNTVCT_EL0 with a fixed offset of zero,
but the virtual timer still uses CNTVOFF_EL2 offset

© 2018 Arm Limited 8

Background – Arm Generic Timer Architecture

Timer Counter Access Trappable
by OS ?

Trappable
by Hypervisor?

EL2 Physical Timer Physical Counter EL2 - -

EL2 Virtual Timer Physical Counter EL2 - -

EL1 Physical Timer Physical Counter EL2, EL1, EL0 yes yes

EL1 Virtual Timer Virtual Counter EL2, EL1, EL0 yes no

Myth: “The virtual timer directly generates virtual interrupts” – not true!

More information: Arm Architecture Reference Manual (Arm ARM)

© 2018 Arm Limited

Arm Generic Timers
and KVM/Arm
Today

© 2018 Arm Limited 10

(Very Quick) Refresher on KVM/Arm

VHE KVM/Arm

Hardware

Linux / KVM

QEMU

VM

OS Kernel

App App

EL2

EL1
EL0

EL2

EL1
EL0

Non-VHE KVM/Arm

Hardware

KVM Lowvisor

Host

Linux

QEMU App

VM

OS Kernel

App App

KVM

© 2018 Arm Limited 11

KVM/Arm and Generic Timer: VHE

Host

Linux / KVM
EL2 Physical Timer

QEMU App

VM

OS Kernel
EL1 Virtual/Physical Timer

App

EL2

EL1

EL0App

KVM and Linux Host use
EL2 Physical Timer

Guest uses:
EL1 Virtual Timer and/or
EL1 Physical Timer

EL2 Virtual Timer is not used

© 2018 Arm Limited 12

KVM/Arm and Generic Timer: Non-VHE

KVM

Host

Linux
EL1 Physical Timer

QEMU App

VM

OS Kernel
EL1 Virtual Timer

App

EL2

EL1

EL0

KVM

App

Host uses
EL1 Physical Timer

Guest uses
EL1 Virtual Timer
EL1 Physical Timer (trap-and-emulate)

EL2 Physical Timer is not used

EL2 Virtual Timer may not exist

© 2018 Arm Limited 13

Linux and Generic Timer Access

Timer VHE KVM/Arm Non-VHE KVM/Arm

EL1 Physical Timer Direct Access Trap-and-emulate

EL1 Virtual Timer Direct Access Direct Access

What does this mean for Linux?

Linux can observe some view of both virtual and physical time, but Linux today always
uses the virtual counter/timer when running as a guest.

So we have an offset to play with.

© 2018 Arm Limited 14

KVM/Arm and the Virtual Counter

Physical Time

Ac
co

un
te

d
Ti

m
e

Real Time

Virtual Time

Create
VM

© 2018 Arm Limited 15

KVM/Arm and the Virtual Counter – Migration

Physical Time
Ac

co
un

te
d

Ti
m

e

Real Time

Virtual Time

Create
VM

Migrate
VM

© 2018 Arm Limited 16

KVM/Arm and the Virtual Counter – Bad Migration
Physical Time

Ac
co

un
te

d
Ti

m
e

Real Time

Virtual Time

Create
VM

Migrate
VM

© 2018 Arm Limited 17

KVM/Arm and the Virtual Counter – Stolen Time

Perceived CPU Time

Stolen Time

Physical Time

Virtual Time

Create
VM

Migrate
VM

Ac
co

un
te

d
Ti

m
e

Real Time

© 2018 Arm Limited 18

KVM/Arm and the Virtual Counter – Suspend

© 2018 Arm Limited 19

KVM/Arm and the Virtual Counter – Pause while suspended

© 2018 Arm Limited 20

What have we learnt so far

Basic timekeeping for VMs is ok

Migration:
• OK with the same counter frequency

• Weird with different counter frequencies

We are not accounting for stolen time at all

No suspend notifications in VMs
• But we can fix this in KVM today

© 2018 Arm Limited

Paravirtualized Time

© 2018 Arm Limited 22

Paravirtualized Time for Arm-based Systems
https://developer.arm.com/docs/den0057/a

BETA software interface specification from Arm

Provides unified interface between hypervisor and guest OS for PV time

Feature is discoverable via SMCCC v1.1

Standardizes hypercall numbers, parameters, return codes, and data structures

© 2018 Arm Limited 23

Definitions of Time

Paused: VM is deliberately paused or host is not running

Running: VM not paused and VCPUs *could be* scheduled.

Physical Time: Real time

Live Physical Time (LPT): Physical Time - Paused

Virtual Time: VCPU running (or deliberately waiting for interrupts)

Stolen Time: VCPU runnable, but queued waiting for other tasks

Fpv: Paravirtualized frequency

© 2018 Arm Limited 24

Live Physical Time

Live Physical Time

Create
VM

Paused

Physical Time

Ac
co

un
te

d
Ti

m
e

Real Time

© 2018 Arm Limited 25

Virtual and Stolen Time

Virtual Time

Create
VM

Stolen Time

Physical Time

Ac
co

un
te

d
Ti

m
e

Real Time

© 2018 Arm Limited 26

Migrating with different frequencies

PV Live Physical Time

Create
VM

Migrate
Downtime

Physical Time

Migrate
VM

Ac
co

un
te

d
Ti

m
e

Real Time

© 2018 Arm Limited 27

Frequencies

Problem reminder: Migrating VMs across machines with different counter frequencies

Fpv: PV Frequency chosen by the hypervisor

Fn: Native frequency of a system

Time PV = Counter * (Fpv / Fn)

© 2018 Arm Limited 28

How does the VM know Fpv and Fn?

Shared data structure between host and guest:

struct pv_time_lpt {
...
u64 sequence_number;
u64 scale_mult;
u32 shift;
u64 Fn;
u64 Fpv;
u64 div_by_fpv_mult;
...

};

// consistency
// Fn -> Fpv conversion
// Fn -> Fpv conversion
// Frequency native
// Frequency PV
// Fpv -> Fn conversion

© 2018 Arm Limited 29

How does this work?

extern struct pv_time_lpt *ptv;

u64 live_physical_time()
{

u64 x;
u32 s_before, s_after;
do {

s_before = ptv->sequence_number;
x = scale_to_fpv(CNTVCT_EL0); // read virtual counter
s_after = ptv->sequence_number;

} while (s_after != s_before);
return x;

}

© 2018 Arm Limited 30

How does this work?

What we are trying to do:
PV Time = vcount * (Fpv / Fn)

extern struct pv_time_lpt *ptv;

u64 scale_to_fpv(u64 vcount)
{

/* In AArch64 this can be achieved with a shift and a
* UMULH instruction. */

u128 tmp = ptv->scale_multiplier * (vcount << ptv->shift);

return tmp >> 64;
}

Fast timekeeping in Fpv without trapping!

© 2018 Arm Limited 31

Programming Timers in a PV World

We now keep PV time, ticking at Fpv

But we have to program a hardware timer, which uses Fn

Interval PV = Interval * (Fn / Fpv)

To avoid rounding down:

Interval PV = (Fn * Interval + Fpv – 1) / Fpv

int upscale_to_native(u64 interval)
{

u64 x = ptv->Fn * interval + ptv->Fpv - 1;
u128 y = ptv->div_by_fpv_mult * x;
return y >> 64;

}

© 2018 Arm Limited 32

PV Stolen Time

Shared per-VCPU data structure between host and guest:

struct pv_time_vcpu_stolen {
...
u64 stolen_time; // stolen time in ns
...

};

No sequence_number. Stolen time accessed using 64-bit single-copy atomics.

© 2018 Arm Limited 33

Migration - Counter

Ti
m

e
in

 F
n

cy
cl

es

Destination machine

Ti
m

e
in

 F
n

cy
cl

es

Source machine
CNTPCT_EL0

TimeTime
2 3

VM departs from source machine:
LPT_Native = CNTPCT_EL0 – CNTVOFF_EL2_guest
Fn_source = Fn

Prior to scheduling VM in destination machine:
LPT_Native = LPT_Native*Fn/Fn_source
shift = ceil(log2(Fpv/Fn))
scale_mult = 264-shift*Fpv/Fn
sequence_number++
CNTVOFF_EL2_guest = CNTPCT_EL0 - LPT_Native

CNTPCT_EL0We adjust the offset that
expresses paused time
when the native
frequency changes.

1. Store LPT Native and
Fn source

2. Scale LPT Native to
Fn destination

3. Calculate new offset
on destination
machine.

© 2018 Arm Limited 34

Migration - Timer
We adjust the Compare
Value of timers.

1. Store interval native
and Fn source

2. Scale interval native
to Fn destination

3. Calculate new
Compare Value on
destination machine.

Ti
m

e
in

 F
n

cy
cl

es

Destination machine

Ti
m

e
in

 F
n

cy
cl

es

Source machine
CNTPCT_EL0

TimeTime
1 2

VM departs from source machine:
vt_interval = CNT_CVAL_EL0 –

(CNTPCT_EL0 – CNTVOFF_EL2_guest);
Fn_source = Fn

Prior to scheduling VM in destination machine:
vt_interval = vt_interval * (Fn / Fn_source)
CNT_CVAL_EL0 = (CNTPCT_EL0 - CNTVOFF_EL2_guest) +

vt_interval

CNTPCT_EL0

© 2018 Arm Limited 35

Putting it all together

Migration:
• Fpv to make sense of time across systems with different counter frequencies

• Efficient software adjustment with the use of scale+shift

• Timers can be programmed with reverse adjustment

• Values are adjusted by hypervisor when migrating across physical machines

Suspend:
• Host machine suspend or VM migration downtime corrections expressed via Live Physical Time (LPT)

• LPT expressed via CNTVOFF_EL2 and the virtual counter

Stolen Time:
• Hypervisor provides stolen time via shared data structure

https://developer.arm.com/docs/den0057/a

© 2018 Arm Limited

Paravirtualized Time
… and nested virtualization

© 2018 Arm Limited 37

Nested Virtualization: Oh no, more turtles…

Arm Generic Timer Architecture not designed with nested virtualization in mind

Complexity space explodes.

Guest hypervisor can be VHE/non-VHE

Host hypervisor can be VHE/non-VHE

Guest hypervisor can use PV time itself, or not, can expose PV time to guests, or not…

Migration makes things harder…

Combining LPT at several levels, and scaling that to Fpv, is even harder…

© 2018 Arm Limited 38

VM

Nested Virtualization: Oh no, more turtles…

We now have two instances of PV time

Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1

PV Time

PV time

BETA: WORK IN PROGRESS!

© 2018 Arm Limited 39

VM

Nested Virtualization: Oh no, more turtles…

We now have two instances of PV time

We can share the host LPT Time structure

Guest guest OS directly sees shift and multiplier

Though not the stolen time structure

The guest hypervisor must present its own stolen
time to the nested VMs
(potentially taking host stolen time into account)

Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1
LPT Time

Stolen
time

Stolen
time

BETA: WORK IN PROGRESS!

© 2018 Arm Limited 40

VM

Nested Virtualization: Combining Offsets

CNTVOFF_EL2 controlled by host hypervisor and
expresses paused time to VM (guest hypervisor)

vCNTVOFF_EL2 (virtual offset) is set by guest
hypervisor and expresses paused time to nested
VM (guest guest OS).

When running guest hypervisor:

CNTVOFF_EL2 = paused

When running guest guest OS:

CNTVOFF_EL2 = paused + vCNTVOFF_EL2 Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1
LPT Time

CNTVOFF_EL2

vCNTVOFF_EL2

BETA: WORK IN PROGRESS!

© 2018 Arm Limited 41

VM

Nested Virtualization: Combining Offsets

New semantics for CNTVOFF_EL2 for guest
hypervisors:

vCNTVOFF_EL2, when using PV Time, is offset from
virtual counter, CNTVCT_EL0.

Host hypervisor can scale combined value no
migrations with different frequencies.

Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1
LPT Time

CNTVOFF_EL2

vCNTVOFF_EL2

BETA: WORK IN PROGRESS!

© 2018 Arm Limited 42

Conclusions

The Arm architecture has some support for virtual time.

But we still need PV Time to address migration and stolen time.

New (BETA!) specification: Paravirtualized Time for Arm-based Systems

http://https://developer.arm.com/docs/den0057/a

Nested virtualization hurts!

4343

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!
감사합니다
ध"यवाद

© 2018 Arm Limited

