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Introduction

KVM/Arm currently provides basic timekeeping functionality:

• VMs can read a counter to measure passing of time

• VMs can program and cancel timers

Without trapping to the hypervisor. Yay!
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What are we missing

No accounting for pausing the VM or suspending the system:
• Results in warnings from the guest OS

No accounting for stolen time:
• Guest processes are starved

• Warnings from the guest OS when oversubscribing physical CPUs

Migrating to a new physical machine with a different counter frequency:
• Timekeeping not aligned with software expectations
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Background – Arm Generic Timers Architecture

Also known as the “Arch Timers” or “Architected Timers”

In Armv8.0, we have:

• The physical counter

• The virtual counter

• Four timers:
• EL3 Physical Timer (for Secure World – not relevant for KVM)

• EL2 Physical Timer (for the hypervisor)

• EL1 Physical Timer (for the OS)

• EL1 Virtual Timer (for the OS)



© 2018 Arm Limited 5

Background – Arm Generic Timers Architecture

In Armv8.1, with the Virtualization Host Extensions (VHE), we have:

• The physical counter

• The virtual counter

• Five timers:
• EL3 Physical Timer (for Secure World – not relevant for KVM)

• EL2 Physical Timer (for the hypervisor)

• EL2 Virtual Timer (for the hypervisor)

• EL1 Physical Timer (for the OS)

• EL1 Virtual Timer (for the OS)
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Background – Arm Generic Timers Architecture
What is a Counter and a Timer?

Counter
Simple 64-bit value monotonically 
increasing at a per-system specific 
frequency.

Timer
A device that triggers an event after some 
time.

Each timer has:

• CVAL (Compare Value)

• CTL (Control Register:
enable, mask, status)

A timer is associated with a counter.

Asserts output line when:

Counter >= CVAL
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The Counters

Physical Counter is 64-bit monotonic counter

Accessed via CNTPCT_EL0

Trappable to EL1 and EL2

Virtual Counter = Physical Counter - Offset

Offset is controlled by EL2 (Hypervisor) using CNTVOFF_EL2

Accessed via CNTVCT_EL0

• Optionally trapped by OS

• VHE hypervisors read CNTVCT_EL0 with a fixed offset of zero,
but the virtual timer still uses CNTVOFF_EL2 offset
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Background – Arm Generic Timer Architecture

Timer Counter Access Trappable 
by OS ?

Trappable
by Hypervisor?

EL2 Physical Timer Physical Counter EL2 - -

EL2 Virtual Timer Physical Counter EL2 - -

EL1 Physical Timer Physical Counter EL2, EL1, EL0 yes yes

EL1 Virtual Timer Virtual Counter EL2, EL1, EL0 yes no

Myth: “The virtual timer directly generates virtual interrupts” – not true!

More information: Arm Architecture Reference Manual (Arm ARM) 
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Arm Generic Timers 
and KVM/Arm
Today
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(Very Quick) Refresher on KVM/Arm
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KVM/Arm and Generic Timer: VHE
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KVM/Arm and Generic Timer: Non-VHE
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Linux and Generic Timer Access

Timer VHE KVM/Arm Non-VHE KVM/Arm

EL1 Physical Timer Direct Access Trap-and-emulate

EL1 Virtual Timer Direct Access Direct Access

What does this mean for Linux?

Linux can observe some view of both virtual and physical time, but Linux today always 
uses the virtual counter/timer when running as a guest.

So we have an offset to play with.
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KVM/Arm and the Virtual Counter
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KVM/Arm and the Virtual Counter – Migration
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KVM/Arm and the Virtual Counter – Bad Migration
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KVM/Arm and the Virtual Counter – Stolen Time
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KVM/Arm and the Virtual Counter – Suspend
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KVM/Arm and the Virtual Counter – Pause while suspended
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What have we learnt so far

Basic timekeeping for VMs is ok

Migration:
• OK with the same counter frequency

• Weird with different counter frequencies

We are not accounting for stolen time at all

No suspend notifications in VMs
• But we can fix this in KVM today
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Paravirtualized Time
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Paravirtualized Time for Arm-based Systems
https://developer.arm.com/docs/den0057/a

BETA software interface specification from Arm

Provides unified interface between hypervisor and guest OS for PV time

Feature is discoverable via SMCCC v1.1

Standardizes hypercall numbers, parameters, return codes, and data structures
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Definitions of Time

Paused: VM is deliberately paused or host is not running

Running: VM not paused and VCPUs *could be* scheduled.

Physical Time: Real time

Live Physical Time (LPT): Physical Time - Paused

Virtual Time: VCPU running (or deliberately waiting for interrupts)

Stolen Time: VCPU runnable, but queued waiting for other tasks

Fpv: Paravirtualized frequency
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Live Physical Time
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Virtual and Stolen Time
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Migrating with different frequencies
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Frequencies

Problem reminder: Migrating VMs across machines with different counter frequencies

Fpv: PV Frequency chosen by the hypervisor

Fn: Native frequency of a system

Time PV = Counter * (Fpv / Fn)
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How does the VM know Fpv and Fn?

Shared data structure between host and guest:

struct pv_time_lpt {
...
u64 sequence_number;
u64 scale_mult;
u32 shift;
u64 Fn;
u64 Fpv;
u64 div_by_fpv_mult;
...

};

// consistency
// Fn -> Fpv conversion
// Fn -> Fpv conversion
// Frequency native
// Frequency PV
// Fpv -> Fn conversion
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How does this work?

extern struct pv_time_lpt *ptv;

u64 live_physical_time()
{

u64 x;
u32 s_before, s_after;
do {

s_before = ptv->sequence_number;
x = scale_to_fpv(CNTVCT_EL0); // read virtual counter
s_after = ptv->sequence_number;

} while (s_after != s_before);
return x;

}
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How does this work?

What we are trying to do:
PV Time = vcount * (Fpv / Fn)

extern struct pv_time_lpt *ptv;

u64 scale_to_fpv(u64 vcount)
{

/* In AArch64 this can be achieved with a shift and a
* UMULH instruction. */

u128 tmp = ptv->scale_multiplier * (vcount << ptv->shift);

return tmp >> 64;
}

Fast timekeeping in Fpv without trapping!
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Programming Timers in a PV World

We now keep PV time, ticking at Fpv

But we have to program a hardware timer, which uses Fn

Interval PV = Interval * (Fn / Fpv)

To avoid rounding down:

Interval PV = (Fn * Interval + Fpv – 1) / Fpv

int upscale_to_native(u64 interval)
{

u64  x = ptv->Fn * interval + ptv->Fpv - 1;
u128 y = ptv->div_by_fpv_mult * x;
return y >> 64;

}
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PV Stolen Time

Shared per-VCPU data structure between host and guest:

struct pv_time_vcpu_stolen {
...
u64 stolen_time;         // stolen time in ns
...

};

No sequence_number. Stolen time accessed using 64-bit single-copy atomics.
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Migration - Counter
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VM departs from source machine:
LPT_Native = CNTPCT_EL0 – CNTVOFF_EL2_guest
Fn_source  = Fn

Prior to scheduling VM in destination machine:
LPT_Native = LPT_Native*Fn/Fn_source
shift = ceil(log2(Fpv/Fn))
scale_mult = 264-shift*Fpv/Fn
sequence_number++
CNTVOFF_EL2_guest = CNTPCT_EL0 - LPT_Native

CNTPCT_EL0We adjust the offset that
expresses paused time 
when the native 
frequency changes.

1. Store LPT Native and
Fn source

2. Scale LPT Native to
Fn destination

3. Calculate new offset
on destination 
machine.



© 2018 Arm Limited 34

Migration - Timer
We adjust the Compare
Value of timers.

1. Store interval native 
and Fn source

2. Scale interval native 
to Fn destination

3. Calculate new 
Compare Value on 
destination machine.
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VM departs from source machine:
vt_interval  = CNT_CVAL_EL0 –

(CNTPCT_EL0 – CNTVOFF_EL2_guest);
Fn_source  = Fn

Prior to scheduling VM in destination machine:
vt_interval  = vt_interval * (Fn / Fn_source)
CNT_CVAL_EL0 = (CNTPCT_EL0 - CNTVOFF_EL2_guest) +

vt_interval

CNTPCT_EL0
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Putting it all together

Migration:
• Fpv to make sense of time across systems with different counter frequencies

• Efficient software adjustment with the use of scale+shift

• Timers can be programmed with reverse adjustment

• Values are adjusted by hypervisor when migrating across physical machines

Suspend:
• Host machine suspend or VM migration downtime corrections expressed via Live Physical Time (LPT)

• LPT expressed via CNTVOFF_EL2 and the virtual counter

Stolen Time:
• Hypervisor provides stolen time via shared data structure

https://developer.arm.com/docs/den0057/a
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Paravirtualized Time
… and nested virtualization
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Nested Virtualization: Oh no, more turtles…

Arm Generic Timer Architecture not designed with nested virtualization in mind

Complexity space explodes.

Guest hypervisor can be VHE/non-VHE

Host hypervisor can be VHE/non-VHE

Guest hypervisor can use PV time itself, or not, can expose PV time to guests, or not…

Migration makes things harder…

Combining LPT at several levels, and scaling that to Fpv, is even harder…
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VM

Nested Virtualization: Oh no, more turtles…

We now have two instances of PV time

Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1

PV Time

PV time

BETA: WORK IN PROGRESS!
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VM

Nested Virtualization: Oh no, more turtles…

We now have two instances of PV time

We can share the host LPT Time structure

Guest guest OS directly sees shift and multiplier

Though not the stolen time structure

The guest hypervisor must present its own stolen 
time to the nested VMs
(potentially taking host stolen time into account)
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Guest Hypervisor

EL1
LPT Time
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time

Stolen 
time

BETA: WORK IN PROGRESS!
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VM

Nested Virtualization: Combining Offsets

CNTVOFF_EL2 controlled by host hypervisor and 
expresses paused time to VM (guest hypervisor)

vCNTVOFF_EL2 (virtual offset) is set by guest 
hypervisor and expresses paused time to nested 
VM (guest guest OS).

When running guest hypervisor:

CNTVOFF_EL2 = paused

When running guest guest OS:

CNTVOFF_EL2 = paused + vCNTVOFF_EL2 Hardware

Hypervisor

Nested VM

OS Kernel

App App

EL2

EL1 (vEL2)

EL0

Guest Hypervisor

EL1
LPT Time

CNTVOFF_EL2

vCNTVOFF_EL2

BETA: WORK IN PROGRESS!
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VM

Nested Virtualization: Combining Offsets

New semantics for CNTVOFF_EL2 for guest 
hypervisors:

vCNTVOFF_EL2, when using PV Time, is offset from
virtual counter, CNTVCT_EL0.

Host hypervisor can scale combined value no 
migrations with different frequencies.
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LPT Time
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BETA: WORK IN PROGRESS!
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Conclusions

The Arm architecture has some support for virtual time.

But we still need PV Time to address migration and stolen time.

New (BETA!) specification: Paravirtualized Time for Arm-based Systems

http://https://developer.arm.com/docs/den0057/a

Nested virtualization hurts!
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Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!
감사합니다
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