
Empty Promise:
Zero-copy Receive for vhost

Kalman Meth, Mike Rapoport, Joel Nider

{meth,joeln}@il.ibm.com

rppt@linux.vnet.ibm.com

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under

grant agreements No 645402 and No 688386.

Virtualization and IO

Bare metal

SR-IOV

paravirtual

emulated

Pe
rf

o
rm

an
ce

Flexibility

:-)
:-(

:-):-(

paravirt +
zerocopy

:-P

paravirt +
zerocopy

:-(

Motivation

● No copy is better than copy

● Zerocopy TX without RX should feel lonely

● It was 8 years since the last attempt. Can we do better?

More motivation

Zerocopy: TX vs RX

Transmit

● Downstream routing is easy

● Memory is always at hand

Receive

● Destination is not yet known

● Need memory for DMA

● Does not exist yet

Assumptions

● Modern NICs are multiqueue

○ Dedicate queues to virtual NIC

● Guest allocates the buffers

○ Remapping DMA region to guest is more complex

● Tight coupling between physical and virtual NICs

○ Restrict zerocopy-RX to macvtap

● Minimal changes to guest

Zero-Copy Rx Architecture

p

Host
VM Guest

user space

kernel space

User buffer

Guest
kernel
buffer

Guest
kernel
buffer

Guest
kernel
buffer

………
….

network

DMA

KVM Hypervisor

Ethernet adapter

macvlan

macvtap

virtio

Per-MAC
ring
buffer

VM GuestVM Guest

M
A

C
1

M
A

C
4

M
A

C
3

M
A

C
2

NIC

Socket
interface

Pass the buffers
down through
the kernel
layers

API changes

netdev

● ->ndo_set_zerocopy_rx(struct net_device *pdev,
 struct net_device *vdev)
○ Pass vdev down the stack to the ethernet adapter to bind physical and virtual queues.

○ Similar to ->ndo_dfwd_add_station()

● ->ndo_post_rx_buffer(struct net_device *dev,
 struct sk_buff *skb)
○ Passes a single (page aligned) buffer to the ethernet adapter

○ skb contains pointer to the upper level device and ubuf_info

API changes (cont)

macvtap

● MSG_ZCOPY_RX_POST
○ Control message from vhost-net to macvtap to propagate the buffers from guest to the

lower levels

● MSG_ZCOPY_RX
○ Flag indicating that message contains preallocated buffers that should not be copied to

userspace

API changes (cont)

virtio-net

● add_recvbuf_full_page()
○ Ethernet adapter driver expects page size aligned buffers

○ Existing add_recvbuf_*() do not care since the data was always copied

Initialization

● Isolate set of queues in physical NIC

● Create 1:1 correspondence between physical and virtual queues

● Clear RX descriptor ring

● Drop pre-allocated RX buffers in physical NIC driver

Memory allocation

● virtio-net (guest)
○ Allocate buffers

■ DMA’able memory (PAGE_SIZE granularity and page aligned)

● vhost-net
○ Post buffers to macvtap

■ New control flag MSG_ZCOPY_RX_POST for macvtap_recvmsg()

● macvtap
○ Allocate skb
○ Map iovec to skb (similar to zerocopy_sg_from_iter)

○ Pass the buffers to physical NIC
■ New method ndo_post_rx_buffer()

● Physical NIC driver adds new buffers to RX descriptor ring

Packet receive

● Physical NIC driver
○ DMA directly to the guest buffers

○ Setup skb structure

○ netif_rx() and friends

● macvtap
○ Queue skb as ready for the userspace

○ Inform vhost-net about the virtio descriptor associated with the skb.

Packet receive (cont)

● vhost-net
○ handle_rx_zero_copy():

■ Update virtqueue

■ Kick macvtap with ->recvmsg(MSG_ZCOPY_RX)

● macvtap (again)
○ macvtap_do_read_zero_copy()

■ skb_array_consume

■ Cleanup

Implementation status

● Initial implementation
○ still sub-optimal

● Stable enough to benchmark

● Source:
○ https://github.com/mikelangelo-project/linux-zecorx

○ https://github.com/mikelangelo-project/qemu-zecorx

https://github.com/mikelangelo-project/linux-zecorx
https://github.com/mikelangelo-project/qemu-zecorx

Test setup

● 2x IBM System x3550 M4 Server
○ Intel® Xeon® Processor E5-2660

■ 8 cores, 16 threads

○ 56G RAM

○ Intel 82599ES 10-Gigabit Network Connection (ixgbe)

● Back to back connection for host NICs

● VM with 4 vCPUs, 2G RAM

● Linux v4.8

● netperf 2.6.0

traffic-gen$ netperf -H guest

v4.8 v4.8 + ZCRX

Throughput (Mbit/sec) 9255.22 4396.34

System Utilization (%) 10.9095 12.2941

CPU usage - vhost (%) 74.676 95.979

CPU usage - qemu (%) 99.6685 100.83

● RX interrupt, and vhost are on the same CPU

● Retry with forced CPU affinity

vm-host$ taskset -cp 4 $(pgrep vhost)
vm-host$ echo 5 > /proc/irq/111/smp_affinity_list
traffic-gen$ netperf -H guest

v4.8 v4.8 + ZCRX

Throughput (Mbit/sec) 9255.22 8492.17

System Utilization (%) 10.9095 12.121

CPU usage - vhost (%) 74.676 86.1722

CPU usage - qemu (%) 99.6685 100.103

What happened

● New bottleneck is in DMA mapping

● Latency has grown
○ Measured with rdtsc() in vhost-net::handle_rx()

■ Copy: ⋍ 2 tscs/byte

■ No copy: ⋍ 3.5 tscs/byte

● Page recycling in ixgbe replaced with ndo_post_buffers()
○ Sequential instead of parallel

○ Move frequent dma_map*() / dma_unmap()

Can we do better?

● Maybe

● tl;dr
○ Try to re-parallel DMA mapping and RX processing

○ Better batching for memory allocation and dma_map/unmap

○ Major changes to virtio ring

○ AF_XDP based virtio backend in user space

Thank you!

