RAM is getting more complex

CPI

24

26

210

5.

Dr. David Alan Gilbert / dgilbert@redhat.com Principal Software Engineer, Red Hat 2018-10-26

1144

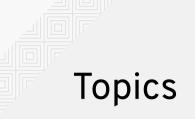
114.4

1122

142

LIBA

C48


182

194

JIIIC

11135

6054

Types of memory

Command line memory specification

'All of RAM/memory'

Sharing

Persistent memory

Types of host memory

QEMU data structures

Huge Pages

Encryption

Impact on migration

Types of memory

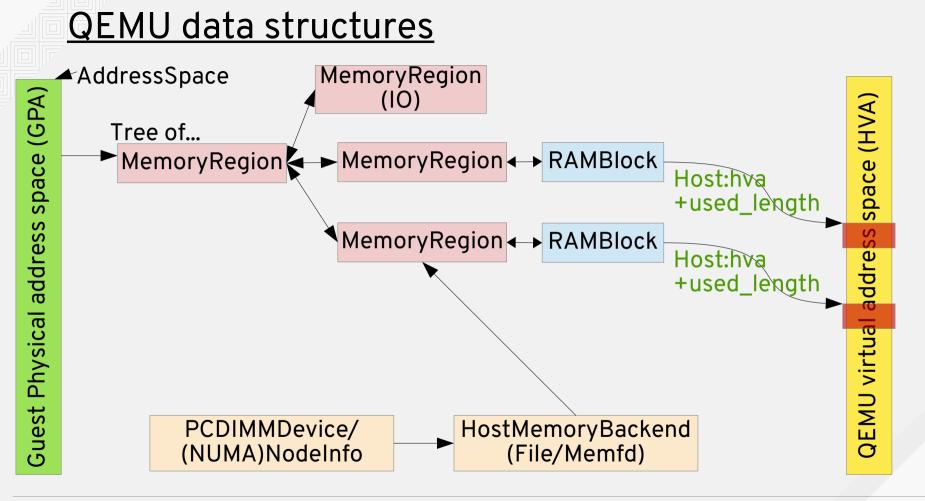
- RAM
- ROM
- Device memory
 - RAM in devices (e.g. Video RAM)
 - May have different alignment or caching rules
 - Emulated devices
 - Real devices
- Flash devices
 - Mostly like ROM, but with special indirect-write tricks
- Persistent memory
 - Mostly like RAM, but.....

Types of host memory

- Anonymous
 - Normal mmap
- File backed
 - 'file' hides many things:
 - Real files (rare)
 - Shmfs RAM filesystems
 - HugetIbfs HUGE TLB pages
 - Persistent memory (pmem) backed
 - Note: ROMs are normally anonymous loaded from file

Command lines and memory

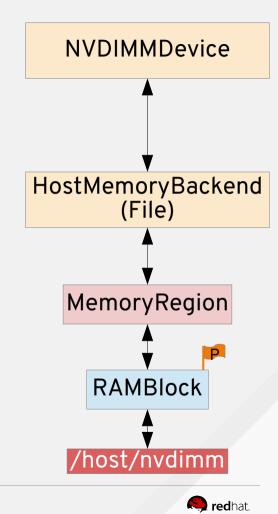
- -m 4G or -m size=4G
- -m 4G, slots=3, maxmem=1T
- -mem-path /dev/hugepages
- -mem-path /dev/hugepages/foo


Falls back to normal memory unless Used with -mem-prealloc

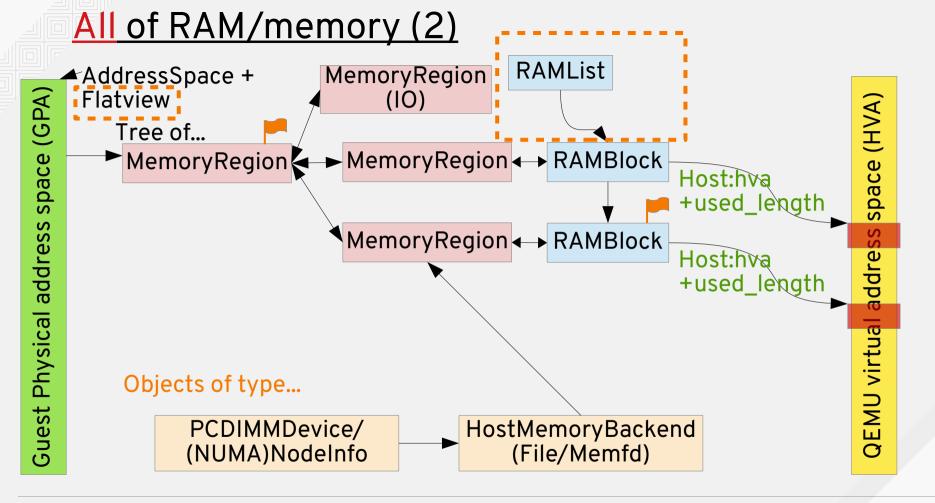
- -m 8G -object
 memory-backend-file,id=mem,mem-path=/dev/hugepages,size=
 8G -numa node,nodeid=0,memdev=mem
- -m 4G, slots=4, maxmem=16G

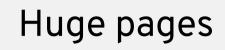
 -object memory-backend-ram, id=m1, size=1G -device pc-dimm, id=d1, memdev=m1
- -M ..., nvdimm -m 4G, slots=4, maxmem=16G

 -object memory-backend-file, id=n1, size=4G, mem-path=/.../...
 -device nvdimm, id=ndimm1, memdev=n1

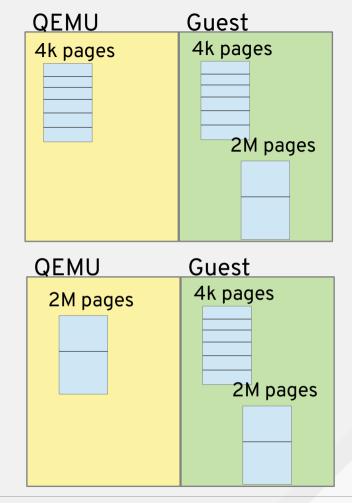


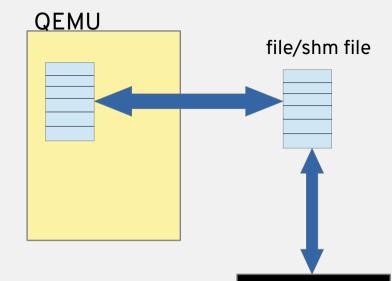
Persistent Memory (aka pmem)


- Various rules to ensure consistency when accessing
 - See libpmem
 - QEMU must call libpmem after some of it's own writes (e.g. migration)
- Typically come as 'NVDIMMs'
- Guest sees areas marked by ACPI
- a) QEMU can use pmem as backing storage for RAMBlock's
- b) QEMU can create virtual NVDIMMs in the guest
- c) Can pass persistence flags to guest
- (a) & (b) are mostly independent
 - e.g. just use NVDIMM as more guest RAM and ignore persistence
 - e.g. fake NVDIMM as seen by guest


'All of RAM/memory'

- All RAMBlock's?
- All guest visible ?
 - Not all RAMBlocks are mapped, some dynamically
- All of one address space?
- Include persistent memory?
 - Decided by backing or guest view?
- ROMs?
 - What about pflash?
- Video RAM?




- Properties of individual RAM blocks
 - Can have a mix of some huge, some normal, different sizes of huge
- Guest and Host huge page are separate issues
 - Although some architecture specific restrictions (e.g. Power doesn't allow guest pages larger than host)
 - X86 allows any mix
- Page sizes architecturally dependent

Sharing

- Shared with another process
- Typically vhost-user
- Per-RAM block but typically used for all main RAM when used.
- Difficult for QEMU to track users
- Sometimes shared by filename, sometimes by fd passing
- Needs some help for QEMU to track external dirtying

External process

Encrypted guest RAM

- AMD's SEV
 - Most of guest memory encrypted
 - Not (usefully) readable by QEMU
 - Guest allows some areas to be accessed for IO
 - Process of measuring BIOSs etc

Migration

- Dirty page flags
 - At 'target page' granularity (typically 4k)
 - Some architectures dirty whole hugepage for one write
- Naming
 - RAMBlock names are part of the stream
 - Assigned only when marked for migration, typically when connecting frontend – can have unnamed RAMBlocks
- Postcopy needs kernel support for different backends
 - Now has normal, hugepage and shared support
 - Other backing files may need kernel support (e.g. pmem)

Useful HMP commands

• info ramblock

Block Name	PSize	Offset	Used	Total
pc.ram	4 KiB	0x00000000c800000	0x00000004000000	0x00000004000000
/objects/m1	4 KiB	0x000000000000000000	0x000000006400000	0x000000006400000
0000:00:02.0/vga.vram	4 KiB	0x00000004c880000	0x00000000100000	0x00000000100000

• info mtree

- info memdev
 - Backends e.g. HostMemoryBackendFile
- info memory-devices
 - Frontends e.g. PCDimm

Conclusion

- There are now lots of special cases
- Special types of host memory mapping
- Different types of memory devices visible to the guest
- Limitations on different architectures
- Different expectations on the lifetime/preservation of memory contents
- They can all combine into more special cases

THANK YOU