ORACLE

Test driven kernel development

Knut Omang, Open Source Summit Europe, 2018

Agenda

e Test driven development (TDD)
e ...inthe context of the Linux kernel
e Unit testing in the kernel

— KTF (Kernel Test Framework)

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 2

“One test result is worth a 1,000 expert opinions.”

(from Test Driven Development for Embedded C, by James W. Grenning)

ORACLE"

http://techbus.safaribooksonline.com/book/software-engineering-and-development/software-testing/9781941222997

Test driven development (TDD)

* Write a (unit/"basic”) test first

 Run it and see it fail on the bug/missing feature
* Implement feature/fix bug/issue

 Run test again and get that good feeling ...

e Commit test to continuous integration regression testing (Cl)
- Now nobody else will be able to break your fix without detection!
- Get fewer embarrassments..
— Sleep better at night...

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

TDD + Cl = true

* No point in adding tests if nobody runs them
e If only you run them, you get to fix all the bugs ;-)

e [f your tests do not prevent merging of buggy commits by others, you get
to fix the bugs the tests detect in other people’s regressions too Y

e About scaling!
— scaling out the test writing effort
— get the full benefit of the tests
— save human resources in coping with regressions, review broken code...

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 5

The usual arguments against TDD...

* “Writing good tests take a long time...”

- optimistic planning, unrealistic deadlines (for quality deliverance)

* “I'm adeveloper, not a tester..”

- Good developers test their code

* “Writing test code is boring..”

- Debugging incomprehensible complex issues under time pressure is worse...

* “We already have a lot of applications - no need for ‘synthetic’ tests..”
- Complex applications much harder to debug than a simple focused failing test
» “Testing this is very difficult”
- Some of the most challenging problems are debugging problems - cowardly shying away from a challenge? ;-)

- Divide and conquer, improving tooling, likely to understand the problem better!
- The alternative, does it terminate at all?

* “l have tested the code”
- “I did these simple 16 manual steps, very easy to remember...”
- “but wait: | don’t remember what | did, and now | can’t reproduce...”
- “Very easy to test, you just run this simple program with these 25 parameters..”
- “but wait: You need these two configuration files and a few setup scripts”

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 6

My humble experience

 Code that isn’t tested does not work...
e Resolution cost increases exponentially with distance from development
 Programming is 10% writing the target code, 90% work on testing

— Easier, less frustrating, embarrasing, stressful to do it up-front

 Working test driven is more fun too..

— That warm, fuzzy feeling of a “green” test suite run..

* Faults from full stack applications are usually harder to debug

— result: More time in the debugger and less time coding, uncertainty about fw.progress!

* Lot to learn from writing the test code..

- Willingness experience correlated, but young developers have the most to gain!

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 7

Reality...

 Have to create output with perceived value within time limits..
e Putting out fire (due to lack of testing in the first place...)

Means:
e (Cease opportunities to improve tests
* Do it right on significant new developments

- New algorithms, interfaces, particularly complex code pieces

 When painful bugs surfaces, make sure they have a test

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 8

Introducing TDD+ClI for legacy code
- not for the faint hearted...

* Potential is great but be prepared for an uphill battle!
— general resistance against writing tests
- test dev doesn’t automatically give credit, on the contrary...
— short term ongoing development needs may complicate
- component under test may not initially lend itself well to automated tests (baseline, APIs)

* And suppose you pull it off?

“This code hasn't hit a single bug for a long time, so it must be easy...
* why did we spend all that time developing tests for it??

- Or: “We have all these issues in this other module (which by the way has no tests)
so have to take some of your resources, sorry!”

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 9

A project where all useful tests have been
written is a dead project!

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

10

Properties of good unit test classes of tests

* Easytorun
— normally/ideally just one way to run it - anyone can!
— runs (relatively) quickly - short development cycle

e Easy(-ier) to debug

— exercises one (or at least few < pragmatism) feature(s)

e Output of passed tests nice, compact, and easy to read/check (green)

— and also gives some positive reinforcement (developers also get fuelled by “neat”)

e OQutput of failed tests focused and detailed/easy to pinpoint (yellow/red)

— short, lend itself to automated reports etc..

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Unit test roles

Test new code and new APIs

— container class impl/usage
- complex data structures, intricate use cases

Tests becomes invariants for how the code is supposed to work

— Trap if someone breaks it - now they got the work instead of you!

- Tests as documentation of semantics

* Learn someone else’s code - how does this work?

— Code your own assumptions - verify!

e Put up guards around assumptions made about other code
— If your code relies on some property, make sure to capture if the property changes!

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Reviewing code...

 Reading other’s code the hardest

— Hardship inversely proportional to the quality of the code..

e A test suite == executable review?
- Trying to understand someone else’s change
— Need to understand the original code
— Need to understand the change
— Convince oneself that there’s no flaws:
— Hypotheses: What if..., what if not.. --> tests?

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Testing the Linux kernel

* Higher stakes in kernel space
* Immense complexity

— considering the cartesian product of all contexts and configs

e Test from user mode where possible
e But impossible to provoke all scenarios without kernel integration!

— Testing kernel level APIs (external *and™* internal)
- Provoking error scenarios

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Testing the Linux kernel

Based on my limited oversight:

“User” detected bugs..

Added complexity of configuration options (ktest)
Testing the basic operation (kselftests)

Compile time: checkpatch, sparse, smatch, coccinelle,...
Runtime: KASAN, lockdep, ...

Random testing - Syzkaller

Unit tests for some specific subsystems

Running real use case workloads

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

15

Good tools more than half the work..

KTF - Kernel Test Framework

e Once a test driven developer you never want to go back ;-)

e Source: https://github.com/oracle/ktf
— Sphinx formatted docs: http://heim.ifi.uio.no/~knuto/ktf/

* A toolbox for writing modularized unit test suites in kernel code
* Simple way of running selected/all kernel tests from user land

e Error injection (by use of kprobes)

* Simple debugfs inspection

e Hybrid testing

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

17

https://github.com/oracle/ktf
http://heim.ifi.uio.no/~knuto/ktf/

Leveraging existing work: gtest (GoogleTest)

o4kvml71 ~/build/master/testdrv/user=eloop --gtest list tests
any.

onepingby8 portlz2

onepingbylé portlz

onepingby32 portl2

onepingbyg4 portl2

onepingby128 portl2 04kvm171 ~fhu11dfmaster;testdrw;userbelaap --gtest_filter=any.onepingbys8 portlz
onepingby256_port12 MNote: Google Test filter = any.onepingby8 portlZz
DnepingbyElz_pnrtlz [==========] Runnlng 1 test frnm 1 test case.
DISABLED onepinginl256wo I] Global test environment set-up.

rtl. - R] 1 test from any

[RUN 1 any.onepingby8 portlz

g:ggi:ggiét Eg:zig [Ok 1 any.onepingby8_portl2 124 assertions, (320 ms)
onepingby3k port12 R] 1 test from any (320 ms total)
?ggg;?gggjk —portiz [----------] Global test environment tear-down

mlx. [==========] 1 test from 1 test case ran. (339 ms total)
onepinginlewo [PasSSED] 1 test.

odkvml71l ~/build/master/testdrv/user=j] YOU HAVE 12 FILTERED OUT TESTS

o4kvml71 ~/build/master/testdrv /usersjj

ORACLE"

Leveraging existing work: gtest (GoogleTest)

e C++ based unit test framework
e Reuse system for selecting/running/reporting the tests

e Kernel APl made similar to gtest (but with C limitations, kernel req):
— TEST(), TEST_F()
— EXPECT_INT_EQ(A,B)
— ASSERT_ADDR_NE(A, B)
— ASSERT_OK_ADDR_GOTO(A, B, label)

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

19

Kernel Test Framework (ktf) implementation

* Generic netlink protocol to query/run/report tests++

* Defines header with macros for creating tests and making assertions
e Defines a few necessary datatypes (ktf_handle, ktf_case, ktf _context)
 Some support utilities

e Kernel logic implemented by (minimal) ktf module

* Users implements test suites as individual modules dependent on ktf
e Aid to get started with new tests suites

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved. 20

#include <stdio.h>
- #include <stdlib.h
#include "ktf_run,h"

#include “debugz. k"
#include <linux/module bk

#include "ktf . h" f# Thiz program iz a generic

uzer level application to run kerrel tests

MODULE_LICEMSE ¢ "GPL" 2 user mOde part (generIC): :fprovided by modules subscribing to ktf services:[]
€T INITHl > g++ -lktf ktfrun.cpp -0 ktfrun%m NV

testing::GTEST_FLAG {output? = "wml:ikiest . xml"z
EAPECT_TRUE{truesi; testing::InithoogleTest (aargc.argul:

TESTtexamples, hello_ok}
t

return FEUM_ALL_TESTS{}:
TEST{examples, hello_faill

. odkvml7l ~/build/master/testdrv/usersktest --gtest list tests
EXPECT_TRUE{fal=zel; examples. 9
hello_fail
hello ok
static void add tests(void) o4kvml7l ~/build/master/testdrv/usersktest

===] Running 2 tests from 1 test case.
BOD_TEST{hello_oki:] Global test environment set-up.
ADD_TEST{hello_faill:] 2 tests from examples
I [RUN] examples.hello fail
/home/komang/build/master/ktf /examples/hello.c:16: Failure
Failure 'false' occurred

static int __init hello_inittvoid) [FAILED] examples.hello_fail, where GetParam() = "hello_fail" 1 assertions, (0 ms)
£ add teste(l: [RUN] examples.hello_ok
- L. . v [ok] examples.hello ok 1 assertions, (0O ms)
Eésﬁil‘éﬁFD’ hello: loadedin®s; R] 2 tests from examples (0 ms total)

3

static woid __exit hello_exit {void?

Global test environment tear-down
2 tests from 1 test case ran. (@ ms total)

[1 test.
KTF_CLEAMUP (3 2 [1 test, listed below:
tlog{T_INFO. "hello: unloadedwn"): [FaILED] examples.hello fail, where GetParam() = "hello fail"
E
1 FAILED TEST
module_initthello_init}: 04kvm171 ~/build/master/testdrv/user=}]

module_exitthello_exit):

echo Oxfff > /sys/module/ktf/parameters/debug _mask

ORACLE"

Questions/demo...

11/18/18 Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

22

