
<Insert Picture Here>

Knut Omang, Open Source Summit Europe, 2018

Test driven kernel development

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 2

Agenda

● Test driven development (TDD)
● … in the context of the Linux kernel
● Unit testng in the kernel

– KTF (Kernel Test Framework)

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 3

“One test result is worth a 1,000 expert opinions.”

(from Test Driven Development for Embedded C, by James W. Grenning)

http://techbus.safaribooksonline.com/book/software-engineering-and-development/software-testing/9781941222997

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 4

Test driven development (TDD)

● Write a (unit/”basic”) test frst
● Run it and see it fail on the bug/missing feature
● Implement feature/fx bug/issue
● Run test again and get that good feeling …
● Commit test to contnuous integraton regression testng (CI)

– Now nobody else will be able to break your fx without detecton!

– Get fewer embarrassments..

– Sleep beter at night...

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 5

TDD + CI = true

● No point in adding tests if nobody runs them
● If only you run them, you get to fx all the bugs ;-)
● If your tests do not prevent merging of buggy commits by others, you get

to fx the bugs the tests detect in other people’s regressions too ;-)

● About scaling!
– scaling out the test writng efort

– get the full beneft of the tests

– save human resources in coping with regressions, review broken code...

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 6

The usual arguments against TDD...
● “Writng good tests take a long tme...”

– optmistc planning, unrealistc deadlines (for quality deliverance)

● “I’m a developer, not a tester..”
– Good developers test their code

● “Writng test code is boring..”
– Debugging incomprehensible complex issues under tme pressure is worse...

● “We already have a lot of applicatons - no need for ‘synthetc’ tests..”
– Complex applicatons much harder to debug than a simple focused failing test

● “Testng this is very difcult”
– Some of the most challenging problems are debugging problems - cowardly shying away from a challenge? ;-)

– Divide and conquer, improving tooling, likely to understand the problem beter!

– The alternatve, does it terminate at all?

● “I have tested the code”
– “I did these simple 16 manual steps, very easy to remember...”

– “but wait: I don’t remember what I did, and now I can’t reproduce...”

– “Very easy to test, you just run this simple program with these 25 parameters..”

– “but wait: You need these two confguraton fles and a few setup scripts”

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 7

My humble experience

● Code that isn’t tested does not work…
● Resoluton cost increases exponentally with distance from development
● Programming is 10% writng the target code, 90% work on testng

– Easier, less frustratng, embarrasing, stressful to do it up-front

● Working test driven is more fun too..
– That warm, fuzzy feeling of a “green” test suite run..

● Faults from full stack applicatons are usually harder to debug
– result: More tme in the debugger and less tme coding, uncertainty about fw.progress!

● Lot to learn from writng the test code..
– Willingness experience correlated, but young developers have the most to gain!

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 8

Reality...

● Have to create output with perceived value within tme limits..
● Putng out fre (due to lack of testng in the frst place…)

Means:
● Cease opportunites to improve tests
● Do it right on signifcant new developments

– New algorithms, interfaces, partcularly complex code pieces

● When painful bugs surfaces, make sure they have a test

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 9

Introducing TDD+CI for legacy code
- not for the faint hearted...

● Potental is great but be prepared for an uphill batle!
– general resistance against writng tests

– test dev doesn’t automatcally give credit, on the contrary...

– short term ongoing development needs may complicate

– component under test may not initally lend itself well to automated tests (baseline, APIs)

● And suppose you pull it of?
– “This code hasn’t hit a single bug for a long tme, so it must be easy...

● why did we spend all that tme developing tests for it??

– Or: “We have all these issues in this other module (which by the way has no tests)

 so have to take some of your resources, sorry!”

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 10

A project where all useful tests have been
writen is a dead project!

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 11

Propertes of good unit test classes of tests

● Easy to run
– normally/ideally just one way to run it - anyone can!

– runs (relatvely) quickly - short development cycle

● Easy(-ier) to debug
– exercises one (or at least few ← pragmatsm) feature(s)

● Output of passed tests nice, compact, and easy to read/check (green)
– and also gives some positve reinforcement (developers also get fuelled by “neat”)

● Output of failed tests focused and detailed/easy to pinpoint (yellow/red)
– short, lend itself to automated reports etc..

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 12

Unit test roles

● Test new code and new APIs
– container class impl/usage

– complex data structures, intricate use cases

● Tests becomes invariants for how the code is supposed to work
– Trap if someone breaks it - now they got the work instead of you!

– Tests as documentaton of semantcs

● Learn someone else’s code - how does this work?
– Code your own assumptons – verify!

● Put up guards around assumptons made about other code
– If your code relies on some property, make sure to capture if the property changes!

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 13

Reviewing code...

● Reading other’s code the hardest
– Hardship inversely proportonal to the quality of the code..

● A test suite == executable review?
– Trying to understand someone else’s change

– Need to understand the original code

– Need to understand the change

– Convince oneself that there’s no faws:

– Hypotheses: What if…, what if not.. --> tests?

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 14

Testng the Linux kernel

● Higher stakes in kernel space
● Immense complexity

– considering the cartesian product of all contexts and confgs

● Test from user mode where possible
● But impossible to provoke all scenarios without kernel integraton!

– Testng kernel level APIs (external *and* internal)

– Provoking error scenarios

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 15

Testng the Linux kernel
Based on my limited oversight:

● “User” detected bugs..
● Added complexity of confguraton optons (ktest)
● Testng the basic operaton (kselfests)
● Compile tme: checkpatch, sparse, smatch, coccinelle,...
● Runtme: KASAN, lockdep, …
● Random testng - Syzkaller
● Unit tests for some specifc subsystems
● Running real use case workloads

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 16

Good tools more than half the work..

or

- and better quality results too!

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 17

KTF - Kernel Test Framework

● Once a test driven developer you never want to go back ;-)
● Source: htps://github.com/oracle/kt

– Sphinx formated docs: htp://heim.if.uio.no/kknuto/kt/

● A toolbox for writng modularized unit test suites in kernel code
● Simple way of running selected/all kernel tests from user land
● Error injecton (by use of kprobes)
● Simple debugfs inspecton
● Hybrid testng

https://github.com/oracle/ktf
http://heim.ifi.uio.no/~knuto/ktf/

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 18

Leveraging existng work: gtest (GoogleTest)

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 19

Leveraging existng work: gtest (GoogleTest)

● C++ based unit test framework
● Reuse system for selectng/running/reportng the tests
● Kernel API made similar to gtest (but with C limitatons, kernel req):

– TEST(), TEST_F()

– EXPECT_INT_EQ(A,B)

– ASSERT_ADDR_NE(A, B)

– ASSERT_OK_ADDR_GOTO(A, B, label)

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 20

Kernel Test Framework (kt) implementaton

● Generic netlink protocol to query/run/report tests++
● Defnes header with macros for creatng tests and making assertons
● Defnes a few necessary datatypes (kt_handle, kt_case, kt_context)
● Some support utlites
● Kernel logic implemented by (minimal) kt module
● Users implements test suites as individual modules dependent on kt
● Aid to get started with new tests suites

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 21

kt - hello world test
user mode part (generic):
g++ -lktf ktfrun.cpp -o ktfrun

echo 0xfff > /sys/module/ktf/parameters/debug_mask

Copyright © 2018 Oracle and/or its afliates. All rights reserved. 11/18/18 22

Questons/demo...

