
KVM Forum 2018

KVM/arm meets the villain

MiƟgaƟng Spectre at the architecture level

Marc Zyngier <marc.zyngier@arm.com>

October 26, 2018

© 2018 Arm Limited

References

A bit of interesƟng literature:

The original Google Project Zero findings (Variants 1, 2 and 3)
https://googleprojectzero.blogspot.co.uk/2018/01/reading-privileged-memory-with-side.html

Also called Spectre-v1, Spectre-v2 and Meltdown

MicrosoŌ and GPZ’s disclosure of Variant 4 (SSB)
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/

ARM’s white paper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper

2 © 2018 Arm Limited

https://googleprojectzero.blogspot.co.uk/2018/01/reading-privileged-memory-with-side.html
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper

Glossary

Architecture: The contract between soŌware and hardware
Independent of any actual implementaƟon
A set of rules describing what is permissible, and what isn’t

µ -architecture: A hardware implementaƟon of the architecture
Anything is possible as long as it doesn’t contravene the architecture

SpeculaƟve execuƟon: an opƟmisaƟon where a CPU performs a task before it may be required
Allows parallellisaƟon to occur in hardware
May have to rollback state when mispredicted

3 © 2018 Arm Limited

“Anything, AnyƟme, Anyplace,
For No Reason At All”

Frank Zappa

4 © 2018 Arm Limited

Threat model

The hypervisor is at a higher priviledge than the guests

We fundamentally assume that its own state is not visible to the guests.
Side channel Ɵming aƩacks allows potenƟal disclosure of secrets

Passwords, keys and other sensiƟve informaƟon

Making use of speculaƟve execuƟon

Limited to informaƟon disclosure, no alteraƟon of data

5 © 2018 Arm Limited

Timing aƩacks

The VM could aƩack the hypervisor by doing something like:

Start with an array of guest memory

Make sure none of it is cached at the moment

Get the hypervisor to speculaƟvely use one of its secrets as an offset in the array, and issue a
load
In the guest, measure the Ɵme it takes to access the corresponding cache lines in the array

If the access is “fast”, then the hypervisor has accessed the cacheline corresponding to its secret offset
Now possible to infer informaƟon about the hypervisor secret

The hard part is for the guest to be “convince” the hypervisor to use the array under speculaƟon.

6 © 2018 Arm Limited

Classes of aƩacks

Boundary check bypass due to branch misprediƟon: Spectre-v1 (variant 1)

Branch re-steering: Spectre-v2 (variant 2)

Privilege separaƟon bypass: Meltdown and Spectre-v3a (variants 3 and 3a)

Memory ordering mispredicƟon: SSB (variant 4)

All these can be composed to create more complex aƩacks.

7 © 2018 Arm Limited

Spectre-v1

8 © 2018 Arm Limited

Spectre-v1, the *very* simplified view

At the core of Spectre-v1 is this simple condiƟon:

if (index < array_bound)
value = array[index];

Where the condiƟon check can be speculaƟvely bypassed, leƫng the access happen.
Fun things happen if:

The index is untrusted

The array address is under control of a lower privilege level

See full example in the GPZ blog post

9 © 2018 Arm Limited

MiƟgaƟon of Variant 1
1 unsigned long array_index_mask_nospec(unsigned long idx,
2 unsigned long sz)
3 {
4 unsigned long mask;
5 asm volatile("cmp %1, %2\n"
6 "sbc %0, xzr, xzr\n"
7 : "=r" (mask)
8 : "r" (idx), "Ir" (sz) : "cc");
9

10 csdb();
11 return mask;
12 }
13

14 #define array_index_nospec(index, size) \
15 ({ \
16 typeof(index) _i = (index); \
17 typeof(size) _s = (size); \
18 unsigned long _mask = array_index_mask_nospec(_i, _s); \
19 \
20 (typeof(_i)) (_i & _mask); \
21 })

We need a way to saniƟze untrusted values
despite speculaƟon

We introduce a
array_index_nospec accessor

Uses a mask that is ~0 if the index is
valid, and 0 if not

The CSDB barrier prevents use of speculated
data aŌer the barrier

To be used with either a csel
instrucƟon or something that affects
the flags

10 © 2018 Arm Limited

MiƟgaƟon of Variant 1: Are we done yet?

Mostly affects the userspace/kernel interface, not so much the guest/host interface

We now have a robust accessor to miƟgate variant 1

Toolchains are also aware of it

The real problem is where to use it

IdenƟfying that kind of sequence is extremely hard

We only miƟgate a few known spots in the Linux kernel
StaƟc analysis is only starƟng to be useful

See Dan Carpenter’s smatch tool

All privileged soŌware is affected, not only the kernel and hypervisors

SƟll a work in progress :-(

11 © 2018 Arm Limited

Spectre-v2

12 © 2018 Arm Limited

Variant 2 (Spectre v2)

What is it?

This is about training the branch predictor

Force the CPU to speculate along a predicted “taken” path

Specially “interesƟng” if you can force speculaƟon in a more privileged context

Can be used to target a Variant 1 gadget

How is that possible?

Affected CPUs do not fully tag their branch predicƟon data by context (EL, ASID, VMID)

Only consider the virtual addresses (PC and target)

If two excepƟon levels can have aliasing VAs, we’re in trouble

As it turns out, host and guest do alias

13 © 2018 Arm Limited

How to miƟgate Spectre v2

The obvious soluƟon is to invalidate the branch predictor (aka BTB) in specific places
In the kernel, when context-switching tasks

plus a couple of other places to protect the kernel itself

In KVM, when exiƟng the guest
So that we can safely run the host

The laƩer needs to be done without execuƟng a single branch instrucƟon
Otherwise the guest might prime the branch predictor to skip the invalidaƟon

So, let’s invalidate the branch predictor...

14 © 2018 Arm Limited

Branch predicƟon invalidaƟon on the ARM architecture
On AArch32, things are preƩy easy:

We have a dedicated instrucƟon for that

BPIALL, aka mcr p15, 0, rx, c7, c5, 6

Works nicely on Cortex-A12 and A17

But...

The architecture doesn’t mandate that the BTB is visible to SW

Which means that implemenƟng BPIALL as NOP is valid!

Duh!

On AArch64, the situaƟon is much clearer:

There is no architectural way of invalidaƟng the branch predictor

I said clearer, I didn’t say good!

15 © 2018 Arm Limited

Branch predicƟon invalidaƟon on the ARM architecture
On AArch32, things are preƩy easy:

We have a dedicated instrucƟon for that

BPIALL, aka mcr p15, 0, rx, c7, c5, 6

Works nicely on Cortex-A12 and A17

But...

The architecture doesn’t mandate that the BTB is visible to SW

Which means that implemenƟng BPIALL as NOP is valid!

Duh!

On AArch64, the situaƟon is much clearer:

There is no architectural way of invalidaƟng the branch predictor

I said clearer, I didn’t say good!

15 © 2018 Arm Limited

Branch predicƟon invalidaƟon on the ARM architecture
On AArch32, things are preƩy easy:

We have a dedicated instrucƟon for that

BPIALL, aka mcr p15, 0, rx, c7, c5, 6

Works nicely on Cortex-A12 and A17

But...

The architecture doesn’t mandate that the BTB is visible to SW

Which means that implemenƟng BPIALL as NOP is valid!

Duh!

On AArch64, the situaƟon is much clearer:

There is no architectural way of invalidaƟng the branch predictor

I said clearer, I didn’t say good!

15 © 2018 Arm Limited

Branch predicƟon invalidaƟon on the ARM architecture
On AArch32, things are preƩy easy:

We have a dedicated instrucƟon for that

BPIALL, aka mcr p15, 0, rx, c7, c5, 6

Works nicely on Cortex-A12 and A17

But...

The architecture doesn’t mandate that the BTB is visible to SW

Which means that implemenƟng BPIALL as NOP is valid!

Duh!

On AArch64, the situaƟon is much clearer:

There is no architectural way of invalidaƟng the branch predictor

I said clearer, I didn’t say good!

15 © 2018 Arm Limited

Branch predicƟon invalidaƟon, the non-architected way

We need to find per-implementaƟons ways to invalidate the BP
Requires inƟmate knowledge of the µ -architecture:

Cortex-A15: Set a chicken bit, and invalidate the I$-cache
Cortex-A57: Turn the MMU off, turn it back on
Cortex-A73: Switch to AArch32, issue a BPIALL
...

And that’s just for a few ARM Ltd CPUs

What about CPUs designed by others implementers?

We could liƩer the kernel with mulƟple ways of invalidaƟng the BP

But this doesn’t scale

Or we could start abstracƟng thing...

16 © 2018 Arm Limited

Firmware to the rescue
Almost all implementaƟons of ARMv8 have a
secure mode

Most privileged execuƟon level known as EL3

Usually used for things like
power-management, secure services

Things you don’t want to see in the Linux kernel
Perfect for abstracƟng things that are very different
from one implementaƟon to another

The hypervisor can easily trap into EL3 to execute a service on its behalf
Using the SMC instrucƟon

Only one implementaƟon (XGene-1) doesn’t have this feature
Let’s ignore it (users can turn the BP off altogether)

Let’s implement our branch predictor invalidaƟon at EL3!

17 © 2018 Arm Limited

Improving the SMC calling convenƟon and discovery mechanisms

A trap to EL3 itself is preƩy cheap
But the SMC Calling ConvenƟon (SMCCC) follows the PCC
Imposes saving/restoring 18 GPRs (on guest exit, all the registers are live)!
This becomes an overhead for exit-heavy workloads

Let’s design a new variant of SMCCC that reduce this overhead: SMCCC-1.1

Guarantees that at most 4 registers are clobbered
Provides a discovery mechanism coupled with PSCI

Allows the SMCCC version to be queried

Defines official “architecture workarounds”
Implemented by ATF (ARM’s reference firmware implementaƟon)
Each vendor to provide their back-end

No implementaƟon? PotenƟally no miƟgaƟon. Pick your vendor carefully...

18 © 2018 Arm Limited

Improving the SMC calling convenƟon and discovery mechanisms

A trap to EL3 itself is preƩy cheap
But the SMC Calling ConvenƟon (SMCCC) follows the PCC
Imposes saving/restoring 18 GPRs (on guest exit, all the registers are live)!
This becomes an overhead for exit-heavy workloads

Let’s design a new variant of SMCCC that reduce this overhead: SMCCC-1.1

Guarantees that at most 4 registers are clobbered
Provides a discovery mechanism coupled with PSCI

Allows the SMCCC version to be queried

Defines official “architecture workarounds”
Implemented by ATF (ARM’s reference firmware implementaƟon)
Each vendor to provide their back-end

No implementaƟon? PotenƟally no miƟgaƟon. Pick your vendor carefully...

18 © 2018 Arm Limited

Meet SMCCC_ARCH_WORKAROUND_1

An abstracted, firmware provided way to invalidate the branch predictor

Implemented on top of SMCCC-1.1

system-wide service

Allow the caller to find out whether this parƟcular CPU requires it...

... to support asymmetric configuraƟons
Yes, big-liƩle strikes back, and it’s not happy...

It is always safe to call this service on any CPU

Even those that doesn’t require it

May come at the expense of performance...

19 © 2018 Arm Limited

Meet SMCCC_ARCH_WORKAROUND_1

An abstracted, firmware provided way to invalidate the branch predictor

Implemented on top of SMCCC-1.1

system-wide service

Allow the caller to find out whether this parƟcular CPU requires it...
... to support asymmetric configuraƟons

Yes, big-liƩle strikes back, and it’s not happy...

It is always safe to call this service on any CPU

Even those that doesn’t require it

May come at the expense of performance...

19 © 2018 Arm Limited

Spectre-v2: KVM implementaƟon details

Remember this “invalidate the BP before any branch”?
This is a big constraint:

Must the first thing happening on guest exit
Has to fit in the excepƟon vectors: 32 instrucƟons on 64bit systems
Must not impact non-affected CPUs, including big-liƩle systems

The trick is to introduce per-CPU vector tables
One set of vectors that just do what they are supposed to do

Let’s call them “canonical” vectors

One set of vectors for affected CPUs
First calling SMCCC_ARCH_WORKAROUND_1
Then branch to the canonical set of vectors

20 © 2018 Arm Limited

And what about AArch32?

Do you really want to know?

No good firmware story on 32bit
Fortunately, there is exactly two affected implementaƟons

Cortex-A15: can issue a full I$ invalidaƟon
Cortex-A12/A17: can directly use BPIALL

We can use the same per-CPU vector trick

Only issue is that we need to fit both BP invalidaƟon and branch in

Exactly One Single InstrucƟon

Not happening

Warning, ugliest hack follows

21 © 2018 Arm Limited

And what about AArch32?

Do you really want to know?

No good firmware story on 32bit
Fortunately, there is exactly two affected implementaƟons

Cortex-A15: can issue a full I$ invalidaƟon
Cortex-A12/A17: can directly use BPIALL

We can use the same per-CPU vector trick

Only issue is that we need to fit both BP invalidaƟon and branch in

Exactly One Single InstrucƟon

Not happening

Warning, ugliest hack follows

21 © 2018 Arm Limited

And what about AArch32?

Do you really want to know?

No good firmware story on 32bit
Fortunately, there is exactly two affected implementaƟons

Cortex-A15: can issue a full I$ invalidaƟon
Cortex-A12/A17: can directly use BPIALL

We can use the same per-CPU vector trick

Only issue is that we need to fit both BP invalidaƟon and branch in

Exactly One Single InstrucƟon

Not happening

Warning, ugliest hack follows

21 © 2018 Arm Limited

And what about AArch32?

Do you really want to know?

No good firmware story on 32bit
Fortunately, there is exactly two affected implementaƟons

Cortex-A15: can issue a full I$ invalidaƟon
Cortex-A12/A17: can directly use BPIALL

We can use the same per-CPU vector trick

Only issue is that we need to fit both BP invalidaƟon and branch in

Exactly One Single InstrucƟon

Not happening

Warning, ugliest hack follows

21 © 2018 Arm Limited

AArch32 hack, simplified version
.align 5

__kvm_hyp_vector:
.global __kvm_hyp_vector

b hyp_reset
b hyp_undef
b hyp_svc
b hyp_pabt
b hyp_dabt
b hyp_hvc
b hyp_irq
b hyp_fiq

__kvm_hyp_vector_bp_inv:
.global __kvm_hyp_vector_bp_inv

add sp, sp, #1 /* Reset 7 */
add sp, sp, #1 /* Undef 6 */
add sp, sp, #1 /* Syscall 5 */
add sp, sp, #1 /* Prefetch abort 4 */
add sp, sp, #1 /* Data abort 3 */
add sp, sp, #1 /* HVC 2 */
add sp, sp, #1 /* IRQ 1 */
nop /* FIQ 0 */

mcr p15, 0, r0, c7, c5, 6 /* BPIALL */
isb

.macro vect_br val, targ
eor sp, sp, #\val
tst sp, #7
eorne sp, sp, #\val
beq \targ
.endm

vect_br 0, hyp_fiq
vect_br 1, hyp_irq
vect_br 2, hyp_hvc
vect_br 3, hyp_dabt
vect_br 4, hyp_pabt
vect_br 5, hyp_svc
vect_br 6, hyp_undef
vect_br 7, hyp_reset

Start with a stack 64bit aligned

Increment SP based on the entry vector

Perform some voodoo to test and restore
SP to its original value

Branch to the right vector

More complicated with Thumb2 ISA22 © 2018 Arm Limited

Fixing Variant-2 for good

Variant-2 only exists because of a lack of tagging in the branch predictor

The architecture now outlaws the lack of branch predictor tagging

This property is exposed to system soŌware via a system register

A number of current implementaƟons have been updated to address this

23 © 2018 Arm Limited

Meltdown

24 © 2018 Arm Limited

Meltdown, aka variant-3

What is it?

A speculaƟve memory access can bypass permission checks

How is that possible?

Fetching the data and the permission checks are done in parallel (oops...)

Early Cortex-A75 is affected

25 © 2018 Arm Limited

MiƟgaƟng Meltdown in KVM

The guest runs at EL0/EL1, and KVM at EL2

Different translaƟon regimes

No possibility of using the EL2 translaƟon regime

No need to miƟgate anything in KVM

The userspace side is protected by KPTI

The only known affected implementaƟon has been fixed

26 © 2018 Arm Limited

Variant-3a

27 © 2018 Arm Limited

Variant 3a
What is it?

Somehow similar to Variant 3, aka Meltdown
Allows a privileged system register to be speculaƟvely read
It sounds worse than it is, really

Most system registers have staƟc values
The only interesƟng thing is VBAR (vector base address), which is a VA
VBAR discloses informaƟon about the VA layout
PreƩy annoying, as we’re introducing HYP VA randomisaƟon
This can be used together with other variants...

Only affects two implementaƟons: Cortex-A57 and A72
How is that possible?

Probably similar to what happens on Variant 3
We’re speculaƟng, so let’s just return the data!

Resolving the speculaƟon later will sort it out

28 © 2018 Arm Limited

Interlude: lessons learned from KPTI

The miƟgaƟon for Meltdown already gives us a good start

The kernel’s own vector base register (VBAR_EL1) is at a well known locaƟon

Doesn’t disclose anything about the kernel layout

We can use the same trick!

Let’s idenƟty-map the vectors

VBAR_EL2 won’t disclose much about the hypervisor VA layout

Branch back to the original, non id-mapped vectors

Did you say “branch from the vectors”?

29 © 2018 Arm Limited

Interlude: lessons learned from KPTI

The miƟgaƟon for Meltdown already gives us a good start

The kernel’s own vector base register (VBAR_EL1) is at a well known locaƟon

Doesn’t disclose anything about the kernel layout

We can use the same trick!

Let’s idenƟty-map the vectors

VBAR_EL2 won’t disclose much about the hypervisor VA layout

Branch back to the original, non id-mapped vectors

Did you say “branch from the vectors”?

29 © 2018 Arm Limited

Interlude: lessons learned from KPTI

The miƟgaƟon for Meltdown already gives us a good start

The kernel’s own vector base register (VBAR_EL1) is at a well known locaƟon

Doesn’t disclose anything about the kernel layout

We can use the same trick!

Let’s idenƟty-map the vectors

VBAR_EL2 won’t disclose much about the hypervisor VA layout

Branch back to the original, non id-mapped vectors

Did you say “branch from the vectors”?

29 © 2018 Arm Limited

Interlude: branching “far” on AArch64

We need to branch from an id-mapped address (a PA)...
... to a random VA locaƟon
Both are in a 52bit address space (though in pracƟce 48bits)
Yes, this is large
Direct branches on AArch64 are PC-relaƟve
Max displacement is 4GB
We must perform an indirect branch...
... AŌer having applied the v2 miƟgaƟon

Two possibiliƟes:
We load the target VA from memory: easy, but also costly
We patch the target VA at runƟme with a series of constant loads

Of course the second choice is much harder, let’s do that!

30 © 2018 Arm Limited

Interlude: branching “far” on AArch64

We need to branch from an id-mapped address (a PA)...
... to a random VA locaƟon
Both are in a 52bit address space (though in pracƟce 48bits)
Yes, this is large
Direct branches on AArch64 are PC-relaƟve
Max displacement is 4GB
We must perform an indirect branch...
... AŌer having applied the v2 miƟgaƟon

Two possibiliƟes:
We load the target VA from memory: easy, but also costly
We patch the target VA at runƟme with a series of constant loads

Of course the second choice is much harder, let’s do that!

30 © 2018 Arm Limited

Interlude: branching “far” on AArch64

We need to branch from an id-mapped address (a PA)...
... to a random VA locaƟon
Both are in a 52bit address space (though in pracƟce 48bits)
Yes, this is large
Direct branches on AArch64 are PC-relaƟve
Max displacement is 4GB
We must perform an indirect branch...
... AŌer having applied the v2 miƟgaƟon

Two possibiliƟes:
We load the target VA from memory: easy, but also costly
We patch the target VA at runƟme with a series of constant loads

Of course the second choice is much harder, let’s do that!
30 © 2018 Arm Limited

Interlude: AlternaƟve sequences, the dynamic way
The arm64 port so far has used a simple way of patching the kernel

Each “canonical” sequence can only have a single possible alternaƟve
alternative_if ARM64_HAS_PAN

b 1f
alternative_else_nop_endif

It worked so far, but we we now need to make it more dynamic

We already have a way to generate kernel code thanks to BPF...

We can reuse the code generaƟon part to our advantage

alternative_cb kvm_patch_vector_branch
b __kvm_hyp_vector + (1b - 0b)
nop
nop
nop
nop

alternative_cb_end

→
stp x0, x1, [sp, #-16]!
movz x0, #(addr & 0xffff)
movk x0, #((addr >> 16) & 0xffff), lsl #16
movk x0, #((addr >> 32) & 0xffff), lsl #32
br x0

Where kvm_patch_vector_branch is a C funcƟon that generates the sequence,

and addr is the vectors VA computed at runƟme

31 © 2018 Arm Limited

Interlude: AlternaƟve sequences, the dynamic way
The arm64 port so far has used a simple way of patching the kernel

Each “canonical” sequence can only have a single possible alternaƟve
alternative_if ARM64_HAS_PAN

b 1f
alternative_else_nop_endif

It worked so far, but we we now need to make it more dynamic

We already have a way to generate kernel code thanks to BPF...

We can reuse the code generaƟon part to our advantage
alternative_cb kvm_patch_vector_branch

b __kvm_hyp_vector + (1b - 0b)
nop
nop
nop
nop

alternative_cb_end

→
stp x0, x1, [sp, #-16]!
movz x0, #(addr & 0xffff)
movk x0, #((addr >> 16) & 0xffff), lsl #16
movk x0, #((addr >> 32) & 0xffff), lsl #32
br x0

Where kvm_patch_vector_branch is a C funcƟon that generates the sequence,

and addr is the vectors VA computed at runƟme

31 © 2018 Arm Limited

Life aŌer Variant-3a

Quite a lot of effort to hide one single system register

But worth the effort to allow randomisaƟon of the HYP VA space

Thankfully the number of affected implementaƟon is limited

32 © 2018 Arm Limited

SSB

33 © 2018 Arm Limited

Variant-4, aka SpeculaƟve Store Bypass
What is it?

A load from an address may, under speculaƟon, observe the result of a store that is not the
latest store to that address
For the Linux kernel, this impacts the way the stack is used:

User space performs a syscall, passing some parameters
Kernel copies user data on the stack
Syscall executed, stack frame discarded, and control returns to userspace
Later on, the kernel uses that same stack region for its own purpose
Writes something to the stack, reads it back, and uses it to index an array

How is that possible?
SpeculaƟon may ignore the dependency
Due to a write buffer
Or the use of a different VA

34 © 2018 Arm Limited

MiƟgaƟon of Variant 4

At the Ɵme of discovery:

No provision for prevenƟng this behaviour in the architecture
Luckily, all affected implementaƟons have a “Load Bypass Store Disable” chicken bit!

Guarantees that Variant 4 cannot occur (affects all loads)
Configured from EL3

Can either be staƟcally set from boot (if the overhead is minimal)
Or switched on demand using a secure service: SMCCC_ARCH_WORKAROUND_2

Enabled on entry from userspace to the kernel
Disabled on exit to userspace
Userspace can query the miƟgaƟon status, and ask to be miƟgated
Slight departure from the x86 miƟgaƟon (kernel always miƟgated)

35 © 2018 Arm Limited

My new best friend: SMCCC_ARCH_WORKAROUND_2

Implemented similarly to SMCCC_ARCH_WORKAROUND_1
Except it has a state!

Implemented system wide, per-CPU vulnerability status
MiƟgaƟon is also exposed to virtual machines

Guest can change miƟgaƟon state by using the same SMCCC_ARCH_WORKAROUND_2 call
KVM forwards the call to EL3
Requires context tracking
Guest state part of the migraƟon state

36 © 2018 Arm Limited

Moving on with variant 4

The ARMv8.5 architecture has added some new features to deal with more efficiently with variant-4.

A PSTATE bit that serves the same purpose as SMCCC_ARCH_WORKAROUND_2

Defaults to “safe”

Avoids traps to EL2/EL3

Patches merged into 4.20!

37 © 2018 Arm Limited

Conclusion

The Linux kernel and KVM on ARM have been heavily modified to cope with Spectre

We’ve managed to do it using a number of abstracƟons
And as the result of an intense collaboraƟve effort

Architecture
ImplementaƟon
Firmware
Kernel

The architecture itself has evolved to limit these problems in the future

38 © 2018 Arm Limited

Thank you

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

Backup

40 © 2018 Arm Limited

Variant 1 (Spectre v1) canonical example

1 struct array {
2 unsigned long length;
3 unsigned char data[];
4 };
5

6 struct array *arr1 = ...; /* small array */
7 struct array *arr2 = ...; /* array of size 0x400 */
8 unsigned long untrusted_offset_from_user = ...;
9

10 if (untrusted_offset_from_user < arr1->length) {
11 unsigned char value;
12

13 value = arr1->data[untrusted_offset_from_user];
14 unsigned long index2 = ((value & 1)*0x100)+0x200;
15

16 if (index2 < arr2->length) {
17 unsigned char value2 = arr2->data[index2];
18 }
19 }

10 Slow to resolve condiƟon, speculaƟng
it as valid

13 value is now speculated using an
untrusted offset

This gives the aƩacker a control address

17 index2, which is the secret is now
used to perform a speculaƟve access

We can now to do a Ɵming measurement on
the arr2 array to extract one bit of value.

41 © 2018 Arm Limited

	
	References
	Glossary
	
	Threat model
	Timing attacks
	Classes of attacks
	
	Spectre-v1, the *very* simplified view
	Mitigation of Variant 1
	Mitigation of Variant 1: Are we done yet?
	
	Variant 2 (Spectre v2)
	How to mitigate Spectre v2
	Branch prediction invalidation on the ARM architecture
	Branch prediction invalidation, the non-architected way
	Firmware to the rescue
	Improving the SMC calling convention and discovery mechanisms
	Meet SMCCC_ARCH_WORKAROUND_1
	Spectre-v2: KVM implementation details
	And what about AArch32?
	AArch32 hack, simplified version
	Fixing Variant-2 for good
	
	Meltdown, aka variant-3
	Mitigating Meltdown in KVM
	
	Variant 3a
	Interlude: lessons learned from KPTI
	Interlude: branching ``far'' on AArch64
	Interlude: Alternative sequences, the dynamic way
	Life after Variant-3a
	
	Variant-4, aka Speculative Store Bypass
	Mitigation of Variant 4
	My new best friend: SMCCC_ARCH_WORKAROUND_2
	Moving on with variant 4
	Conclusion
	
	
	Variant 1 (Spectre v1) canonical example

