
"It's raining cats and dogs!"

SELINUX
COLORING BOOK

the

DAN WALSH MÁIRÍN DUFFYwritten by illustrated by

TYPE ENFORCEMENT

PROCESS TYPES
The SELinux primary model of enforcement is called type
enforcement. Basically, this means we define the label on a
process based on its type, and the label on a file system
object based on its type.

Imagine a system where we define types on objects like cats
and dogs. A cat and dog are process types.

CAT DOG

CAT_CHOW DOG_CHOW

OBJECT TYPES

We have a class of objects that they want to interact with
which we call food. And I want to add types to the food,
cat_chow and dog_chow.

POLICY RULES

As a policy writer, I would say that a dog has permission to eat
dog_chow food and a cat has permission to eat cat_chow food.
In SELinux we would write this rule in policy, as shown below:

ALLOW CAT

DOGALLOW

CAT_CHOW:FOOD

DOG_CHOW:FOOD

EAT

EAT

CAT

DELICIOUS!

CAT_CHOW:FOOD

YUMMY!

DOG

DOG_CHOW:FOOD

With these rules the kernel would allow the cat process to eat
food labeled cat_chow and the dog to eat food labeled
dog_chow.

KERNEL

DOG

But in an SELinux system, everything is denied by default. This
means that if the dog process tried to eat the cat_chow, the
kernel would prevent it.

CAT_CHOW

Likewise, cats would not be allowed to touch dog food.

DOG_CHOW

CAT

KERNELNO! BAD CAT!
DON'T EAT THAT!

MCS ENFORCEMENT

We've typed the dog process and cat process, but what
happens if you have multiple dog processes: Fido and Spot?
You want to stop Fido from eating Spot's dog_chow.

FIDO

SPOT

One solution would be to create lots of new types, like
Fido_dog and Fido_dog_chow. But, this will quickly become
unruly because all dogs have pretty much the same
permissions.

To handle this we developed a new form of enforcement,
which we call Multi Category Security (MCS). In MCS, we add
another section of the label which we can apply to the dog
process and to the dog_chow food. Now we label the dog
process as dog:random1 (Fido) and dog:random2 (Spot).

DOG:RANDOM2DOG:RANDOM1

We label the dog chow as dog_chow:random1 (Fido) and
dog_chow:random2 (Spot).

DOG_CHOW:
RANDOM1

DOG_CHOW:
RANDOM2

MCS rules say that if the type enforcement rules are OK and the
random MCS labels match exactly, then the access is allowed. If
not, it is denied.

TYPE ENFORCEMENT

Fido (dog:random1) trying to eat cat_chow:food is denied by
type enforcement.

KERNEL

DOG

CAT_CHOW

Fido (dog:random1) is allowed to eat dog_chow:random1.

DOG:RANDOM1

DOG_CHOW:
RANDOM1

MCS ENFORCEMENT

Fido (dog:random1) denied to eat spot's (dog_chow:random2)
food.

KERNEL

DOG:
RANDOM1

DOG_CHOW:
RANDOM2

MLS ENFORCEMENT

Another form of SELinux enforcement, used much less
frequently, is called Multi Level Security (MLS); it was developed
back in the 60s and is used mainly in trusted operating systems
like Trusted Solaris.

The main idea is to control processes based on the level of the
data they will be using: a secret process can not read top-secret
data.

Instead of talking about different dogs, we now look at
different breeds. We might have a Greyhound and a
Chihuahua:

GREYHOUND CHIHUAHUA

We might want to allow the Greyhound to eat any dog food,
but a Chihuahua could choke if it tried to eat Greyhound dog
food.

We want to label the Greyhound as dog:Greyhound and his dog
food as dog_chow:Greyhound, and label the Chihuahua as
dog:Chihuahua and his food as dog_chow:Chihuahua.

DOG_CHOW:
GREYHOUND

DOG_CHOW:
CHIHUAHUA

With the MLS policy, we would have the MLS Greyhound label
dominate the Chihuahua label. This means dog:Greyhound is
allowed to eat
dog_chow:Greyhound and dog_chow:Chihuahua.

DOG:
GREYHOUND

DOG_CHOW:
GREYHOUND

DOG_CHOW:
FIDO

DOG_CHOW:CHIHUAHUA

DOG_CHOW:
CHIHUAHUA

DOG:
CHIHUAHUA

But dog:Chihuahua is not allowed to eat dog_chow:Greyhound.

KERNEL
THIS IS A BIT TOO
BEEFY FOR YOU...

DOG:
CHIHUAHUA

DOG_CHOW:
GREYHOUND

Of course, dog:Greyhound and dog:Chihuahua are still
prevented from eating cat_chow:Siamese by type
enforcement, even if the MLS type Greyhound dominates
Siamese.

KERNEL

DOG:
CHIHUAHUADOG:

GREYHOUND

CAT_CHOW:
SIAMESE

Learn more at redhat.com:

http://red.ht/security

"Who's afraid of the big bad wolf?"

CONTAINER
COLORING BOOK

the

DAN WALSH MÁIRÍN DUFFYwritten by illustrated by

INTRODUCTION
Once upon a time, there were three little pigs. They each
needed a place to live.

There's a lot of different types of places to choose from...

HOUSE DUPLEX APARTMENT HOSTEL PARK

If a piggy was an application.... living in a house (physical machine) would be
the most secure. If one house is broken into, the other houses remain secure.
A separate house per piggy means a lot more home maintenance, though!

A piggy living in a duplex is like an application with multiple services deployed
to multiple VMs on the same physical machine. While the structure is shared,
the entry points are not. If one home is compromised, breaking in to the other
VMs involves breaking through the hypervisor, sVirt, and the host kernel.
However, you still have the costs of maintaining multiple OSes, with loss of
speed and a limited ability to share resources.

Piggies living in an apartment building are like applications running in
containers. You get excellent sharing of services, lower cost of maintainence
and decent separation. One problem, though, is that if the front desk were
compromised, then all of the apartments would be compromised. This is
similar to a container environment where, if the kernel were compromised, all
of the containers would be as well.

Piggies living in a hostel are like running an
application's services side-by-side on the
same physical machine. In this scenario,
there is limited isolation between services,
but if one is compromised
there is a strong chance
others will be as well.
 Of course, if
you're running
with SELinux,
you'll have
better
isolation.

If they are up for
living on the edge -
as folks who run
their apps on systems
running setenforce 0
are - the piggy could
consider sleeping in
the park. We don't
need to tell you how
risky this is.

Containers, as represented by the apartment building, seem like a good middle
ground. The apartment building offers better security than services sharing
the same host, with more flexibility on content. Apartments provide better
sharing of resources, startup speeds, and the cost of maintenance is lower
than duplexes (VMs). Let's explore life at the apartment building in greater
detail.

When choosing an apartment building to live in or a host platform to run your
containers, construction quality is a top concern.

Running containers on a
do-it-yourself platform is
like choosing a piggy
apartment building made of
straw. Buildings made of
straw require constant
upkeep and you are on your
own in terms of support.

Running containers on a
community distro is like
choosing a piggy apartment
building made of sticks.
It might be slightly more
robust / reliable but still
comes with no commerc ial
support.

Running containers on a
platform like Red Hat
Enterprise Linux or OpenShift,
Red Hat's container application
platform, is like choosing a
piggy apartment building made
of brick. The platform is
supported and maintained by a
trusted partner.

Life in the brick apartment complex is best understood through the
exploration of the following six characteristics...

NAMESPACES

RESOURCE
CONTROL

SECURITY

IMAGES

1

2

3

4
OPEN
STANDARDS

MANAGEMENT

5

6

Our piggy friends who live in apartments share the same building and basic
layout. They personalize their space to make it their own.

Container namespaces provide containers a way to identify and 'personalize'
their own space (as the apartment piggies like to do.)

Each apartment is their own little world. Even though the
spaces are right next to each other in the same building,
they can appear completely different from each other.

NAMESPACES

In a shared resource situation, such as piggies sharing an apartment building,
resource management is key to a good experience for everyone. For example,

RESOURCE CONTROL

flushing the toilet in one
apartment should not
raise the water
temperature in another.
Blowing a fuse in one
apartment should not kill
the power in another.

Cgroups are used to
manage container
resource control. If you
have a poorly-written
cgroup configuration,
you'll run into problems
with resources.

In the container world,
you want the best
performance for shared
resources. You can rely
on the Red Hat
Enterprise Linux kernel
for this.

Think of a Red Hat
subscription as access to
the building super, who
makes sure the
infrastructure of the
building is working
correctly and who tunes
it as needed.

SECURITY
As with apartments, the most secure containers have strong walls between
them. You don't want one compromised container to result in the whole
system being compromised.

This is very important with containers, because the kernel is shared. What
makes the Red Hat "Brick Apartment Building" more secure? SELinux, for
one...

Your subscription also gives you access to security analysis tools (like Red Hat's
Deep Container Inspection) to scan your containers and hosts for bad
configurations and vulnerabilities...

... and access to a team of Red Hat
security experts who fix issues as they
arise.

Good security practices lower a
piggy's risk of an unexpected
roast!

It can be overwhelming to furnish an empty apartment (or container) from
scratch.

IMAGES

This piggy sourced some
furniture curbside - the safety
and c leanliness of such finds is
somewhat questionable...
almost like picking random
container images off the
Internet.

This piggy picked up
furniture pieces at a
warehouse to assemble
himself. Pain-staking and
time-consuming... almost
like building your own base
container images.

This piggy purchased high-
quality, factory-assembled
furniture from a showroom
and it was delivered to his
home via white-glove
service. This is like downloading
Red Hat certified container
images from the Red Hat Registry
or from your local Satellite
Server.

COMMUNITY STANDARDS
When selecting a piggy apartment building, it’s important to ensure that its
infrastructure is compliant with common industry standards and polic ies.

What if your appliances
run at a different
voltage than what is
provided in your new
apartment? You may
need to repurchase a
number of expensive
appliances (or
rearchitect your
applications).

If your furniture is too large
(or too small), living in the
apartment might require
some amount of adjustment.

Standardization and consistency create a common foundation that leads to
greater application portability. At Red Hat we always attempt to work with the
upstream first. In containers we are the #1 contributor to Docker other than
Docker, Inc and #2 in Kubernetes to Google. We also work with the Open
Container Initiative and the Cloud Native Computing Foundation to help set and
promote shared standards.

Whether it's piggy apartments or Linux containers - infrastructure consistency
means you can confidently deploy container-based applications anywhere, from
bare metal to c loud environments.

MANAGEMENT
As you expand to house many piggies across many apartment buildings,
management and upkeep quickly become complicated and time consuming.

Management and upkeep is important with apartments and apartment buildings
- espec ially as you scale up. The same is true for application containers.
OpenShift, Red Hat’s container platform, works in concert with Red Hat
CloudForms to help you streamline node and container creation,
deployment, orchestration workflows, and management.

What happens when the
apartment building's
roof begins to leak?

What happens when the
lawn becomes overgrown?

When new piggies move
in and others inevitably
move out… who’s there
to support their
respective migrations?

The piggies have finally found their perfect home. Ready to make the move?
Visit http://red.ht/containers to learn more.

THE END

Learn more at redhat.com:

http://red.ht/containers

A supercomet exploded in our solar system and rubble is hurtling towards us.

THE EARTH IS IN DANGER...

The Global Superhero Alliance must deploy a shield to protect—and save—the planet.

The alliance has partnered with Containers 'R' Us to develop, build, deploy, and manage the
container-based, anti-rubble protective shield. Containers 'R' Us delivers containers from a
centralized launch station.

"Containers 'R' Us! Run the incoming object detection container!"

"Containers 'R' Us! Build and deploy the laser-guided
targeting container!!"

"LAUNCH THE IMPACT ABSORPTION
SHIELD CONTAINER!"

"LAUNCH THE REFLECTIVE
 SHIELD CONTAINER!"

"10 MORE LASER-GUIDED
TARGETING CONTAINERS!"

"20 MORE OBJECT
DETECTION CONTAINERS!"

WHIRRRRRR...

"We've lost contact with all
containers! What happened?"

"They’re all launched from
the central station—a
single process. When the
process hung, it cut us off
from our containers.""Oh no... is there

any hope?"

"I HAVE AN IDEA!"
"What if..."

"...Each container was launched from its own
process?"

"....Each tool was separate, so one failure doesn’t break
all, and we could swap tools
based on need?"

"...We could innovate in a
broad, distributed, diverse
community, instead of
relying on a single project
arbiter?"

A crack team of individual superheroes, each with strengths tailored for spec ific container
purposes, all collaborating together but no single one overriding all...

MEET THE

PODMAN!
SUPERPOWER:
Low-level, daemonless container image management

A command-line tool for the development of containers. Run standalone, non-orchestrated
containers as well as groups of containers called 'pods.' Podman makes it quick, easy, and
lightweight to develop, test, and debug containers.

https://github.com/projectatomic/libpod

https://github.com/projectatomic/buildah

Build both working containers and images in various formats, most notably the open
container image (OCI) format. Buildah lets you mount and modify the image’s filesystem
layer to c reate a new image. It provides low-level container image constructs so other,
higher-level tools can build images in new and interesting ways and it supports Dockerfiles.

SUPERPOWER:
Builds container images

BUILDAH!

SKOPEO!
SUPERPOWER:
Teleports containers

Skopeo inspects remote container images on registries, but it's more powerful than that. It
can copy images between different container image stores or directly into docker daemon or
containers/storage—sharing it with CRI-O, buildah, and podman. Skopeo can also convert
between Docker and OCI images.

https://github.com/projectatomic/skopeo

https://github.com/kubernetes-incubator/cri-o

A container runtime based on the Open Container Initiative and the Kubernetes Container
Runtime Interface (CRI). Once your containers are ready to run in production, CRI-O can
help. It spec ializes in servic ing the needs of the Kubernetes orchestrator—pulling images,
c reating containers on them, and removing them from the system.

SUPERPOWER:
Runs containers in production

cri-o!

https://openshift.io

Red Hat OpenShift is a container application platform that brings containers to the enterprise.
OpenShift inc ludes Kubernetes to automate the deployment, scaling, and management of
containerized apps. It also adds developer- and operations-centric tools that enable rapid
application development, easy deployment and scaling, and long-term life-cyc le maintenance
for teams.

SUPERPOWER:
Orchestrates containers and container images

OPENSHIFT!

"We couldn't get a communications line back up to the launch station."

"Thanks to the Container Commandos, we redesigned our container deployment using a
decentralized model. Now, one component process going down won't bring everything
else with it."

"When the rubble came within range, we were ready—and our system held up!"

The planet is safe!

Separate processes. Spec ialized projects. Great teamwork.
Check them out for your container projects!

Or is it? More adventures await with a new member joining the team—CoreOS! Stay tuned...

	The SELinux Coloring Book
	Type Enforcement
	MCS Enforcement
	MLS Enforcement

	The Container Coloring Book
	Introduction
	Namespaces
	Resource Control
	Security
	Images
	Community Standards
	Management

	The Container Commandos Coloring Book
	Podman
	Buildah
	Skopeo
	cri-o
	OpenShift

