CILFive

MENTORSHIP SERIES

CILF [ive oo

Static Analysis & Tools

Using Linux and Open Source Tools for
Static Analysis
Dipl.-Ing. Jan-Simon Moller,
AGL Release Manager,
The Linux Foundation

CILF [ive oo

Jan-Simon Moller 3

jsmoeller@linuxfoundation.org
dI9pf@gmx.de , dI9pf on #freenode

'-l LF 'M MENTORSHIP
L SERIES
Topics

1. What is 'Static Analysis'
2. Motivations to use it
3. Open Source Tools for Static Analysis
a. Example using gcc10
b. Example using clang
c. Example using cppcheck
d. Example using CodeChecker
Example integration in Makefiles
Example integration with git hooks
Summary
Q/A

N o oA

CILF [ive oo

What is 'Static Analysis’

-

CILE [y venose

'Static Analysis' or 'Static Code Analysis' in general is a method
for debugging a program before it is run. It is done by analyzing
the code in question and comparing it to a set of coding rules.
This is in contrast to 'Dynamic Analysis' which means the
program does run. (covered in an upcoming webinar)

In most cases it is either performed on some parsed
representation of the source code or on IR.

D —

CILE [y venose

e Static analysis identifies defects before you run a program (e.g.,

between coding and unit testing).

Dynamic analysis identifies defects when you run a program
(e.g., during unit testing).

However, some coding errors might not surface during unit
testing. So, there are defects that dynamic testing might miss
that static code analysis can find and of course vice versa.

-

CILE [y venose

e Usually it is performed by an automated tool.
e This type of analysis finds weaknesses and vulnerabilities.
e |t is usually done early in the development cycle.

CILF [ive oo

Motivations to use it

-

CILE [y venose

e Static analysis simply can find bugs - early

e Static analysis can find hard-to-spot bugs
o e.g. 30-level deep undefined/invalid access

e Static analysis can complement the peer review

S T

CILE [y venose

e Static analysis is also used to comply with
coding guidelines or industry standards
o e.g. MISRA or [SO-26262

e Itis also enforced for certain
applications/industries:
o medical

o nuclear
o automotive, aviation

CILF [ive oo

Open Source Tools for
Static Analysis

-

CILE [y venose

e There are multiple categories of tools available
o tools using a form of string or pattern matching
o tools analyzing the code during compilation
o tools specialized for kernel space
o tools for userspace

e Of course there are also proprietary tools

-

CILE [y venose

The Linux Kernel is a very large and special codebase.

Currently it contains more than 20 million lines of code. This is very demanding on the
tooling used. Thus there are specialized tools around the kernel:

- scripts/checkpatch.pl (string matching, basics&style, good for new submissions)
* sparse make C=1 CHECK="/usr/bin/sparse"
« coccinelle make C=1 CHECK="scripts/coccicheck"
(see next tuesday's webinar by Julia Lawall)
« smatch make C=1 CHECK="smatch -p=kernel"
(see webinar in ~2 weeky by Dan Carpenter)
« gcc/ clang static analyser

For userspace there are a large number of tools available.

ILF e

A selection for C/C++ is below:

gcc
clang
cppcheck
coccinelle
splint
rats
flawfinder

S T

MENTORSHIP

SERIES

generic

!
!

security

CILE [y venose

During development you can easily use these

directly within your source tree:
e gcc (since gcc 10)
o gcc -fanalyzer

e clang
o e.g. scan-build make

e cppcheck

gcc -fanalyzer enables:

-Wanalyzer-double-fclose
-Wanalyzer-double-free
-Wanalyzer-exposure-through-output-file
-Wanalyzer-file-leak
-Wanalyzer-free-of-non-heap
-Wanalyzer-malloc-leak
-Wanalyzer-possible-null-argument
-Wanalyzer-possible-null-dereference
-Wanalyzer-null-argument
-Wanalyzer-null-dereference
-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-tainted-array-index
-Wanalyzer-unsafe-call-within-signal-handler
-Wanalyzer-use-after-free
-Wanalyzer-use-of-pointer-in-stale-stack-frame

> cppcheck nullpointer.c
Checking nullpointer.c

nullpointer.c:7:14: error:
[nullPointer]
int value = *pointer;

A

nullpointer.c:6:17:
0

int * pointer = NULL;
nullpointer.c:7:14:
int value = *pointer; /*

A

note:

note:

MENTORSHIP

CILF [ve =

Null pointer dereference:

Assignment 'pointer=NULL',

Null pointer dereference

pointer

/* Dereferencing happens here */

assigned value is

Dereferencing happens here */

ILF e

> gcc -Werror -fanalyzer nullpointer.c

nullpointer.c: In function ‘main’:

nullpointer.c:7:5: error: dereference of NULL ‘pointer’ [CWE-690]

7 | int value = *pointer; /* Dereferencing happens here */

‘ ~

‘main’: events 1-2

| 6 | int * pointer = NULL;

\ \ e

\ \ \

| | (1) ‘pointer’ is NULL

| 7 | int value = *pointer; /* Dereferencing happens here */

\ \ (2)
[

all warnings being treated as errors

dereference of NULL ‘pointer’

ccl:

MENTORSHIP
SERIES

[-Werror=analyzer-null-dereference]

/isee: https://developers.redhat.com/blog/2020/03/26/static-analysis-in-qcc-10/
[try: https://godbolt.org/

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

CILE [y venose

> clang-tidy nullpointer.c
Running without flags.
2 warnings generated.

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
[clang-analyzer-deadcode.DeadStores]
int value = *pointer; /* Dereferencing happens here */

A

nullpointer.c:7:5: note: Value stored to 'value' during its initialization is never read

nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')
[clang—-analyzer-core.NullDereference]
int value = *pointer; /* Dereferencing happens here */

A

nullpointer.c:6:1: note: 'pointer' initialized to a null pointer value
int * pointer = NULL;

A

nullpointer.c:7:13: note: Dereference of null pointer (loaded from variable 'pointer')
int value = *pointer; /* Dereferencing happens here */

A

CILE [y venose

> scan-build make TLDR: replaces $(CC) !!!

scan-build: Using '/usr/bin/clang-10.0.1"' for static analysis
/usr/bin/ccc-analyzer -c nullpointer.c -o nullpointer

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
int value = *pointer; /* Dereferencing happens here */

Nannan ~a~m~a~~~~

nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')

int value = *pointer; /* Dereferencing happens here */

2 warnings generated.

scan-build: 2 bugs found.

scan-build: Run 'scan-view /tmp/scan-build-2020-10-15-161857-10509-1"' to examine bug reports.

#include <stddef.h>
> scan-view /tmp/scan-build-2020-10-15-161857-10509-1
Starting scan-view at: http://127.0.0.1:8181

1
2
3 dint main(int argc, char *argv[]) {
4
5
6

int * pointer = NULL;

\ 1 'pointer initialized to a null pointer value — J

(=> point browser to this)
7 int value = *pointer; /+ Dereferencing happens here x/

\ 2 -~ Dereference of null pointer (loaded from variable 'pointer’) j

9 return 0;
10

1}

12

S T

CILE [y venose

https://qithub.com/Ericsson/codechecker
Collection of tools to

e intercept and log the build calls
e analyse the gathered data

(using clang-tidy and clangSA)
e report (static or webui)

Extension and successor of the original clang static
analyser / scan-build.

https://github.com/Ericsson/codechecker

] Ericsson / codechecker

<> Code

(1) Issues 183

¥ Branch: master v

{1 Pullrequests 35

l gyorb committed dbf5618 7 days ago = X

.github/ISSUE_TEMPLATE
analyzer

bin

codechecker_common
config

docker

docs
requirements_py/docs

scripts

(¥) Actions

(] Projects 3

Go to file

() Security

& Watch

[~ Insights

{0 3,818 commits ¥ 5branches) 36 tags

[GitHub] Fix minor grammatical things in the issue templates

[analyzer] Fix analyzer --file option

[license] Change license (#2729)

Add a missing space in a debug warning

Adding new checkers to the profiles, setting severities

new dockerfiles for test environments

[tools] tu_collector get dependent source files for headers

Merge pull request #1935 from gyorb/readthedocs

[license] Change license (#2729)

7 months ago
20 days ago
last month

last month

2 months ago
2 years ago
21 days ago
15 months ago

last month

49 ¢ Star 972 Y Fork 111

About

CodeChecker is an analyzer tooling,
defect database and viewer extension
for the Clang Static Analyzer and
Clang Tidy

@ codechecker.readthedocs.io

cang cpp ¢ clang-tidy
static-analysis linux results-viewer
macosx codechecker llvm analysis
database objective-c defects
docker static-analyzer static-analyzers
0 Readme

&8 Apache-2.0 License

@ CodeChecker 6.12 Default

| Checker statistics | = Al reports New features * = agl-service-gps@oneshot x

agl-service-gps@oneshot

cynagora@oneshot

app-framework-binder@oneshot

app-framework-main@oneshot

agl-service-audiomixer

i Number of
i unresolved

reports

17

79

35

Detection status

% (17)

% (79)

% (36)

Analyzer statistics

clangsa: ¥ (1)
clang-tidy: v (1)

clang-tidy: ¥ (30)
clangsa: ¥ (30)

clangsa:
v (92) X (3)

clang-tidy:
v (92) ¥ (3)

clangsa: ¥ (34)
clang-tidy: ¥ (34)

clang-tidy: ¥ (2)
clangsa: ¥ (2)

Storage date

2020-07-02
08:41:01

2020-07-02
08:00:16

2020-07-02
07:50:44

2020-07-01
22:04:52

2020-07-01
21:36:00

Analysis

duration

00:00:01

00:00:35

00:02:04

00:00:43

00:00:01

Check

command

Show

Show

Show

Show

Show

Version tag Description

Back to product list

Diff ' Delete

CodeCheck Delete
er version

6.13
(dbf5618¢00
h26f41197d8
fa2f1599a37
58900924)

6.13
(dbf5618¢00
b26f41197d8
fa2f1599a37
58900924)

6.13
(dbf5618c00
b26f41197d8
fa2f1599a37
58909924)

6.13
(dbf5618c00
b26f41197d8
fa2f1599a37
58909924)

6.13
(dbf5618¢00
h26f41197d8
fa21599a37
58909924)

'-l LF l,'w MENTORSHIP .
L SERIES
TLDR: does not need to change $(CC)

Userspace tool CodeChecker is a set of python helpers
e main feature is that you wrap you build commands like so

CodeChecker log -b "make" -o compilation. json

e This will preload a logger and store the compiler commands

e With the exact commands logged, we can replay the
compilation using clang and its tools clang-tidy and
clangSA

CodeChecker analyze compilation.json -o ./reports

S T

v MENTORSHIP
CILF e o
From there you can 'parse’ into reports

CodeChecker parse ./reports

CodeChecker parse ./reports -e html -o
reports html

or 'store' online in webui/frontend
CodeChecker store ./reports --name mypkg@v0.9 \

--url http://localhost:8001/Default

@ CodeChecker 6.12 Default Back to product list

® Runs 5 | |4 Checker statistics | =& All reports New features

Diff | Delete
Diff Name Number of Detection status Analyzer Storage date Analysis Check Versiontag Description CodeCheck Delete
unresolved statistics duration command er version
reports
. 6.13
pclangsas” (1) 20200702 (dbf5618¢00
agl-service-gps@oneshot 1 %) o clang-tidy: 08:41:01 00:00:01 Show b26f41197d8
v (1) B fa2f1599a37
58909924)
— 6.13
* clang-tidy: T (dbf5618c00
cynagora@oneshot 17 # 1) v (30) 08:00:16 00:00:35 Show b26f41197d8
clangsa: v (30) hinsee ey
58909924)
o clangsa: 6.13
v (92) X (3 (G (dbf5618c00
app-framework-binder@oneshot 79 % (79 2)) () 2830587422 00:02:04 Show b26f41197d8
o clang-tidy: oL fa2f1599a37
v (92) X (3) 58909924)
. 6.13
g s] —— (dbf5618c00
app-framework-main@oneshot 35 % (36) o clang-tidy: 22:04:52 00:00:43 Show b26f41197d8
v (39) s fa2f1599a37
58909924)
g 6.13
SORMIHAY | s e (dbf5618c00
agl-service-audiomixer 4 WO v (2 21:36:00 00:00:01 Show b26f41197d8
» clangsa: v (2) fa2f1599a37

58909924)

@ CodeChecker 6.12 Default ¢ -

® Runs 5 | | Checker statistics | =8 All reports New features % = agl-service-gps@oneshot

i= Bug Overview | 9 Run history ¥ main-cynagora-agent.c

[] High [Show documentation | > Unreviewed ~ [Show arrows | Comments (0) ‘
L475 - core.CallAndMessage [32]
@ 2nd function call argument is an uniniti /home/d19pf/AGL/codescantest/cynagora/src/main-cynagora-agent.c Also found in: ## cynagora@oneshot:main-cynagora-agent.c:L475 [-] v
FTUTY
C @ L637 - Entering loop body 471 if (g < 0)
bed Q L639 - Assuming the condition is tr return;

I Q L677 - Assuming ‘optind' is not equ

if (afy < 1 || stremp(av[0], "sub")) {
% 0 1682 - Assuming the condition is fz

reply(q,|av[0], ac > 1 ? av[1] : NULL);

I e L685 - Assuming ‘optind' is >= ‘ac’ @ € 2nd function call argument is an uninitialized value
! L687 - Assuming ‘piped' is 0 476 Helde {
! @ L699 - Assuming ‘efd'is >= 0 7T ubquery(q, ac > 1 ? atoi(av[l]) : 1,
: o 478 ac >|2 ? av[2] : NULL,
I © L707 - Assuming 'c'is >= 0 479 ac >[3 7 av[3] @ NULL,
I @ L712 - Assuming 'rc'is >= 0 ac >|4 ? av[4] : NULL,
1 @ L719 - Assuming 'rc'is >= 0 accx|bid.avfl] s WULL);
}
1 @D 726 - Assuming ‘piped is 0 }
! @ L736 - Assuming 'prog'is non-null '
C @ L747 - Entering loop body 35 void dispatch_difect(int ac, char *xav)

g m L749 - Assuming 'rc'is equal to 1 ‘@ € Entered call from 'read_and_dispatch' » ‘ l
3% @B L750 - Assuming the condition is 1
3 @ L751 - Assuming the condition is 1
Q m L752 - Calling 'read_and_dispatch'
& @ L211 - Entered call from 'main’
! @D 1218 - Assuming 'sz'is > 0
Q@) L221 - Calling 'buf_parse'
& @) L163 - Entered call from 'read
1 @ L171 - Assuming 'p' is non-nu

[01);

)

‘@ € Assuming 'q' is >= 0) \

eturn;

dispatch(q, ap - 1, &av([l]);
\@ € Calling 'dispatch' » \

CILF [ive oo

Example integration in
Makefiles

MENTORSHIP

CILF [ve =

Integrating gcc's -fanalyzer into your Makefiles is easy: just add it to the CFLAGS !

Similar for cmake . Add it to the CFLAGS.

TARGET EXEC ?= myprog
BUILD DIR 2=
SRC_DIRS ?=

$ (shell find $(SRC_DIRS) -name *.c)
$ (SRCS:%=35 (BUILD DIR)/%.0)

$ (OBJS:.o=.d)

$ (shell find $ (SRC_DIRS)
$ (addprefix -I,$(INC _DIRS))

CFLAGS ?= $(INC_FLAGS) -Wall -Werror -fanalyzer

INC FLAGS :

$ (BUILD DIR)/$ (TARGET EXEC): $(OBJS)
$(OBJS) -o $@ $(LDFLAGS)

c source
$(BUILD_DIR) $.c.o: %.cC
$ (MKDIR_P) $(dir $@)

$(CC) $(CFLAGS) -c $< -o $a@

.PHONY: clean

clean:
$(RM) -r $(BUILD_DIR)

—-include $ (DEPS)

MKDIR P ?= mkdir -p

D —

CILE [y venose

* |f you use clang, you can run scan-build like so:
— scan-build make <make options>

- |t will add the flags on the fly.
(If your Makefile uses $(CC) !!)

* As shown, CodeChecker will record/reply the
compilation without this need.

CILE [y venose

You can add cppcheck like so:

SOURCES = main.cpp
CPPCHECK = cppcheck
CHECKFLAGS = -q --error-exitcode=1

default: cppcheck.out.xml hellomake
.PHONY: default clean

cppcheck.out.xml: $ (SOURCES)
$ (CPPCHECK) $ (CHECKFLAGS) $* -xml >$@

hellomake: $(OBJ)
S (LINK.c) -o $@ s~

CILF [ive oo

Example integration
with git hooks

D —

CILE [y venose

Git hooks are a mechanism that allows arbitrary code to be run before, or after,
certain Git lifecycle events occur. For example, one could have a hook into the
commit-msg event to validate that the commit message structure follows the
recommended format.

The hooks can be any sort of executable code, including shell, PowerShell, Python,
or any other scripts. Or they may be a binary executable. Anything goes! The only
criteria is that hooks must be stored in the .git/hooks folder in the repo root, and that
they must be named to match the corresponding events (as of Git 2.x):

https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/

applypatch-msg
pre-applypatch
post-applypatch
pre-commit
prepare-commit-msg
commit-msg
post-commit
pre-rebase

MENTORSHIP l

ILF e

SERIES

post-checkout
post-merge
pre-receive
update
post-receive
post-update
post-rewrite
pre-push

CILE [y venose

./myproject/.git/hooks/pre-commit
#!/bin/sh

echo "Running static analysis..."
Inspect code using scan-build, will exit 1 when bug is found

scan-build make -3j2
status=$?

if ["$status" = 0] ; then
echo "Static analysis found no problems."
exit 0

else
echo 1>&2 "Static analysis found violations."
exit 1

fi

CILE [y venose

Example from:
https://qithub.com/danmar/cppcheck/blob/main/tools/qit-pre-commit-cppcheck

[...]
We should pass only added or modified C/C++ source files to cppcheck.
changed files=$(git diff-index --cached $against | \

grep -E '[MA] .*\. (clcpplcclexx)$' | cut -f 2)

if [-n "Schanged files"]; then
cppcheck --error-exitcode=1 $changed files
exit $7?

fi

exit O

https://github.com/danmar/cppcheck/blob/main/tools/git-pre-commit-cppcheck

CILF [ive oo

Summary

-

CILE [y venose

- Static analysis
— can help you improve your projects codebase early
during coding
— Is one requirement in various standards / industries
— can be easily added to your automation / ClI

-

CILE [y venose

References:

e https://qithub.com/dI9pf/staticanalysis-webinar

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
https://godbolt.org/

https://clang.llvm.org/extra/clang-tidy/
https://github.com/Ericsson/codechecker
http://cppcheck.sourceforge.net/

https://github.com/dl9pf/staticanalysis-webinar
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
https://godbolt.org/
https://clang.llvm.org/extra/clang-tidy/
https://github.com/Ericsson/codechecker
http://cppcheck.sourceforge.net/

CILF [ive oo

Q/A

'-l L F 'w MENTORSHIP
L SERIES
Thank you for joining us today!
We hope it will be helpful in your journey to learning more about effective and productive

participation in open source projects. We will leave you with a few additional resources for
your continued learning:

e The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

e Outreachy remote internships program supports diversity in open source and free
software

e Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

e Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

