

Static Analysis & Tools
Using Linux and Open Source Tools for

Static Analysis
Dipl.-Ing. Jan-Simon Möller,

AGL Release Manager,
The Linux Foundation

Jan-Simon Möller
jsmoeller@linuxfoundation.org
dl9pf@gmx.de , dl9pf on #freenode

Topics
1. What is 'Static Analysis'
2. Motivations to use it
3. Open Source Tools for Static Analysis

a. Example using gcc10
b. Example using clang
c. Example using cppcheck
d. Example using CodeChecker

4. Example integration in Makefiles
5. Example integration with git hooks
6. Summary
7. Q/A

What is 'Static Analysis'

● 'Static Analysis' or 'Static Code Analysis' in general is a method
for debugging a program before it is run. It is done by analyzing
the code in question and comparing it to a set of coding rules.

● This is in contrast to 'Dynamic Analysis' which means the
program does run. (covered in an upcoming webinar)

● In most cases it is either performed on some parsed
representation of the source code or on IR.

● Static analysis identifies defects before you run a program (e.g.,
between coding and unit testing).

● Dynamic analysis identifies defects when you run a program
(e.g., during unit testing).

● However, some coding errors might not surface during unit
testing. So, there are defects that dynamic testing might miss
that static code analysis can find and of course vice versa.

● Usually it is performed by an automated tool.
● This type of analysis finds weaknesses and vulnerabilities.
● It is usually done early in the development cycle.

Motivations to use it

● Static analysis simply can find bugs - early
● Static analysis can find hard-to-spot bugs

○ e.g. 30-level deep undefined/invalid access
● Static analysis can complement the peer review

● Static analysis is also used to comply with
coding guidelines or industry standards
○ e.g. MISRA or ISO-26262

● It is also enforced for certain
applications/industries:
○ medical
○ nuclear
○ automotive, aviation

Open Source Tools for
Static Analysis

● There are multiple categories of tools available
○ tools using a form of string or pattern matching
○ tools analyzing the code during compilation
○ tools specialized for kernel space
○ tools for userspace

● Of course there are also proprietary tools

The Linux Kernel is a very large and special codebase.
Currently it contains more than 20 million lines of code. This is very demanding on the
tooling used. Thus there are specialized tools around the kernel:

• scripts/checkpatch.pl (string matching, basics&style, good for new submissions)
• sparse make C=1 CHECK="/usr/bin/sparse"
• coccinelle make C=1 CHECK="scripts/coccicheck"

 (see next tuesday's webinar by Julia Lawall)
• smatch make C=1 CHECK="smatch -p=kernel"

 (see webinar in ~2 weeky by Dan Carpenter)
• gcc / clang static analyser

For userspace there are a large number of tools available.
A selection for C/C++ is below:
● gcc generic
● clang
● cppcheck ↕
● coccinelle ↕
● splint
● rats
● flawfinder security

During development you can easily use these
directly within your source tree:
● gcc (since gcc 10)

○ gcc -fanalyzer
● clang

○ e.g. scan-build make
● cppcheck

gcc -fanalyzer enables:

-Wanalyzer-double-fclose

-Wanalyzer-double-free

-Wanalyzer-exposure-through-output-file

-Wanalyzer-file-leak

-Wanalyzer-free-of-non-heap

-Wanalyzer-malloc-leak

-Wanalyzer-possible-null-argument

-Wanalyzer-possible-null-dereference

-Wanalyzer-null-argument

-Wanalyzer-null-dereference

-Wanalyzer-stale-setjmp-buffer

-Wanalyzer-tainted-array-index

-Wanalyzer-unsafe-call-within-signal-handler

-Wanalyzer-use-after-free

-Wanalyzer-use-of-pointer-in-stale-stack-frame

> cppcheck nullpointer.c
Checking nullpointer.c ...
nullpointer.c:7:14: error: Null pointer dereference: pointer
[nullPointer]
int value = *pointer; /* Dereferencing happens here */
 ^
nullpointer.c:6:17: note: Assignment 'pointer=NULL', assigned value is
0
int * pointer = NULL;
 ^
nullpointer.c:7:14: note: Null pointer dereference
int value = *pointer; /* Dereferencing happens here */
 ^

> gcc -Werror -fanalyzer nullpointer.c

nullpointer.c: In function ‘main’:

nullpointer.c:7:5: error: dereference of NULL ‘pointer’ [CWE-690] [-Werror=analyzer-null-dereference]

7 | int value = *pointer; /* Dereferencing happens here */

 | ^~~~~

 ‘main’: events 1-2

|

| 6 | int * pointer = NULL;

| | ^~~~~~~

| | |

| | (1) ‘pointer’ is NULL

| 7 | int value = *pointer; /* Dereferencing happens here */

| | ~~~~~

| | |

| | (2) dereference of NULL ‘pointer’

|

cc1: all warnings being treated as errors

//see: https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

//try: https://godbolt.org/

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

> clang-tidy nullpointer.c
Running without flags.
2 warnings generated.

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
[clang-analyzer-deadcode.DeadStores]
int value = *pointer; /* Dereferencing happens here */
 ^
nullpointer.c:7:5: note: Value stored to 'value' during its initialization is never read

nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')
[clang-analyzer-core.NullDereference]
int value = *pointer; /* Dereferencing happens here */
 ^

nullpointer.c:6:1: note: 'pointer' initialized to a null pointer value
int * pointer = NULL;
^

nullpointer.c:7:13: note: Dereference of null pointer (loaded from variable 'pointer')
int value = *pointer; /* Dereferencing happens here */
 ^

> scan-build make TLDR: replaces $(CC) !!!

scan-build: Using '/usr/bin/clang-10.0.1' for static analysis
/usr/bin/ccc-analyzer -c nullpointer.c -o nullpointer

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
int value = *pointer; /* Dereferencing happens here */
 ^~~~~ ~~~~~~~~
nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')
int value = *pointer; /* Dereferencing happens here */
 ^~~~~~~~
2 warnings generated.
scan-build: 2 bugs found.
scan-build: Run 'scan-view /tmp/scan-build-2020-10-15-161857-10509-1' to examine bug reports.

> scan-view /tmp/scan-build-2020-10-15-161857-10509-1
Starting scan-view at: http://127.0.0.1:8181

(-> point browser to this)

https://github.com/Ericsson/codechecker
Collection of tools to
● intercept and log the build calls
● analyse the gathered data

(using clang-tidy and clangSA)
● report (static or webui)
Extension and successor of the original clang static
analyser / scan-build.

https://github.com/Ericsson/codechecker

Userspace tool CodeChecker is a set of python helpers
● main feature is that you wrap you build commands like so
 CodeChecker log -b "make" -o compilation.json

● This will preload a logger and store the compiler commands
● With the exact commands logged, we can replay the

compilation using clang and its tools clang-tidy and
clangSA

 CodeChecker analyze compilation.json -o ./reports

TLDR: does not need to change $(CC)

● From there you can 'parse' into reports

CodeChecker parse ./reports

CodeChecker parse ./reports -e html -o

reports_html

● or 'store' online in webui/frontend

CodeChecker store ./reports --name mypkg@v0.9 \

 --url http://localhost:8001/Default

Example integration in
Makefiles

• Integrating gcc's -fanalyzer into your Makefiles is easy: just add it to the CFLAGS !
• Similar for cmake . Add it to the CFLAGS.

TARGET_EXEC ?= myprog
BUILD_DIR ?= ./build
SRC_DIRS ?= ./src

SRCS := $(shell find $(SRC_DIRS) -name *.c)
OBJS := $(SRCS:%=$(BUILD_DIR)/%.o)
DEPS := $(OBJS:.o=.d)
INC_DIRS := $(shell find $(SRC_DIRS) -type d)
INC_FLAGS := $(addprefix -I,$(INC_DIRS))
CFLAGS ?= $(INC_FLAGS) -Wall -Werror -fanalyzer

$(BUILD_DIR)/$(TARGET_EXEC): $(OBJS)
 $(CC) $(OBJS) -o $@ $(LDFLAGS)

c source
$(BUILD_DIR)/%.c.o: %.c
 $(MKDIR_P) $(dir $@)
 $(CC) $(CFLAGS) -c $< -o $@

.PHONY: clean

clean:
 $(RM) -r $(BUILD_DIR)

-include $(DEPS)

MKDIR_P ?= mkdir -p

• If you use clang, you can run scan-build like so:
– scan-build make <make options>

• It will add the flags on the fly.
(If your Makefile uses $(CC) !!)

• As shown, CodeChecker will record/reply the
compilation without this need.

You can add cppcheck like so:
SOURCES = main.cpp

CPPCHECK = cppcheck

CHECKFLAGS = -q --error-exitcode=1

default: cppcheck.out.xml hellomake

.PHONY: default clean

cppcheck.out.xml: $(SOURCES)

 $(CPPCHECK) $(CHECKFLAGS) $^ -xml >$@

hellomake: $(OBJ)

 $(LINK.c) -o $@ $^

Example integration
with git hooks

Git hooks are a mechanism that allows arbitrary code to be run before, or after,
certain Git lifecycle events occur. For example, one could have a hook into the
commit-msg event to validate that the commit message structure follows the
recommended format.

The hooks can be any sort of executable code, including shell, PowerShell, Python,
or any other scripts. Or they may be a binary executable. Anything goes! The only
criteria is that hooks must be stored in the .git/hooks folder in the repo root, and that
they must be named to match the corresponding events (as of Git 2.x):

https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/

• applypatch-msg
• pre-applypatch
• post-applypatch
• pre-commit
• prepare-commit-msg
• commit-msg
• post-commit
• pre-rebase

• post-checkout
• post-merge
• pre-receive
• update
• post-receive
• post-update
• post-rewrite
• pre-push

./myproject/.git/hooks/pre-commit

#!/bin/sh

echo "Running static analysis..."

Inspect code using scan-build, will exit 1 when bug is found

scan-build make -j2

status=$?

if ["$status" = 0] ; then

echo "Static analysis found no problems."

exit 0

else

echo 1>&2 "Static analysis found violations."

exit 1

fi

Example from:
https://github.com/danmar/cppcheck/blob/main/tools/git-pre-commit-cppcheck

[...]

We should pass only added or modified C/C++ source files to cppcheck.

changed_files=$(git diff-index --cached $against | \

 grep -E '[MA] .*\.(c|cpp|cc|cxx)$' | cut -f 2)

if [-n "$changed_files"]; then

 cppcheck --error-exitcode=1 $changed_files

 exit $?

fi

exit 0

https://github.com/danmar/cppcheck/blob/main/tools/git-pre-commit-cppcheck

Summary

• Static analysis
– can help you improve your projects codebase early

during coding
– is one requirement in various standards / industries
– can be easily added to your automation / CI

References:
● https://github.com/dl9pf/staticanalysis-webinar

● https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
● https://godbolt.org/
● https://clang.llvm.org/extra/clang-tidy/
● https://github.com/Ericsson/codechecker
● http://cppcheck.sourceforge.net/

https://github.com/dl9pf/staticanalysis-webinar
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
https://godbolt.org/
https://clang.llvm.org/extra/clang-tidy/
https://github.com/Ericsson/codechecker
http://cppcheck.sourceforge.net/

Q/A

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

