

Memoptimizer watches your
memory usage so you don’t have

to!

Khalid Aziz, Senior Software Engineer, Oracle

● The problem we are solving
● Reduce sys admin burden through automation
● Does it work?

Agenda

● System has large amount of memory, does not use memory heavily, just does lot of I/O
● You start to see messages from kernel it has run out of order n pages, or launching a new program

takes a long time
● You check memory usage:

free -h
 total used free shared buff/cache available

Mem: 722G 2.7G 3.5G 33M 716G 715G
Swap: 4.0G 524K 4.0G

cat /proc/buddyinfo

Node 0, zone DMA 0 1 1 2 3 0 1 0 1 1 3

Node 0, zone DMA32 8 4 8 5 5 7 9 7 5 6 289

Node 0, zone Normal 291 259 768 533 284 1923 34 9 583 1 0

Node 1, zone Normal 1239 1647 577 428 627 162 231 158 360 0 0

● On a system with 722G memory, only 2.7G is in use and yet only 3.5G of memory is free

Kernel runs out of free pages

● Linux kernel uses page/buffer cache to cache frequently used data, primarily disk resident data
● Kernel allocates as much of unused memory as possible to page/buffer cache
● In previous scenario 716G of memory is allocated to page/buffer cache and the number of pages of

order 3 and higher is fairly low
● Memory used by page/buffer cache can be reclaimed by kernel whenever more memory is needed

which is done asynchronously in the background by kswapd
● Pages reclaimed from page/buffer cache can be compacted into higher order pages. This done by

kcompactd
● What triggers reclamation/compaction is the watermarks

Where did all memory go?

What are watermarks

Based upon picture in Mel Gorman’s book -
https://www.kernel.org/doc/gorman/html/understand/understand005.html

● Min watermark is computed so kernel will keep a minimum number of pages free which are
reserved for critical allocations (GFP_ATOMIC). All other allocations wait until synchronous (direct)
reclamation can free up pages

● Min watermark can be changed through tunable min_free_kbytes (mfk)
● Low and high watermarks are computed by adding an offset to min watermark calculated in

__setup_per_zone_wmarks()
● Offset added to min watermark to compute low and high is the larger of 4 times of min, and

watermark_scale_factor fraction of number of pages
● The gap between watermarks can be changed through watermark_scale_factor
● Just the low and high watermarks can be changed by changing watermark_scale_factor or all

three can be changed by changing min_free_kbytes

Setting watermarks

● Min watermark had been capped at 64M back in 2004-2005 timeframe (pre-git days) irrespective of
size of system memory. Finally raised to 256M in 2020

● A customer runs into scenario described earlier and the obvious solution is to get page
reclamation to kick in earlier. So we raise mfk as mitigation measure

● This works for a while until a new workload size/behavior breaks this. So we raise mfk yet again.
We got to the point of following recommendations for mfk:

Playing with watermarks

Memory size
(GB)

16 192 384 768 1024 1536 2048

mfk 82M 960M 1.92G 3.84G 5.12G 7.68G 10.24G

● Raising mfk continually is not a sustainable solution
● We need a more rational cap on mfk in kernel. mfk cap was raised after a very long time to 256M in

kernel in 2020
● Watermarks need to be tuned to workload behavior on each system. Workload behavior can

change from system to system and from time to time on the same system
● Forcing more aggressive reclamation during periods of high page allocation/free activity by raising

watermarks works but when the system calms down, keeping watermarks high results in fewer
pages available to page/buffer cache

Time to rethink

● Kernel behaves reactively to memory pressure
● By the time kernel sees low memory condition, it may already be under too severe a stress to

recover. It may be too late to avert impending allocation stalls
● What if we could study system behavior continuously, model it mathematically, project future free

memory needs based upon that model and tune watermarks to address upcoming memory needs?
● We can model system behavior using recent free page data and calculate a trend line for memory

consumption using the method of least squares
● This mathematical formula x = ay + b (where x is number of pages, y is time) then allows us to

calculate memory demand at any point in future given current memory consumption trend
● We can also calculate current page reclamation and compaction rates by watching change in

number of free pages of various order over time
● With this information in hand, we can calculate if the system will run out of free pages or higher

order pages in near future. If so, we can adjust watermarks to mitigate this

Adaptive and Proactive watermarks

Method of least squares

● Current number of free pages give us the points on the plot which we can fit a trend line to
● For the trend line to track system behavior dynamically, it must be recomputed periodically
● Create a sliding window of last N data points
● Sample system periodically, fill the sliding window and fit a trend line to these points using method

of least squares
● Create forecasts for memory exhaustion using this trend line for each zone and overall system

Putting it all together - Modeling

● If there is impending free page exhaustion, force earlier and/or longer reclamation by adjusting
watermarks

● If higher order pages are projected to run out because of memory fragmentation, force compaction
● If system activity is slowing down (free page count going up), back off aggressive reclamation by

lowering watermarks
● At the next sampling period, update sliding window and repeat the process

Putting it all together - Actions

● Initial implementation was chosen to be a kernel patch to kswapd.
● Kswapd could run the modeling algorithm every time it runs
● If the result of prediction based on system modeling indicates potential free pages exhaustion in

near future, it could use reclaim boost to reclaim more pages
● If the result of prediction indicates potential to run out of higher order pages in near future, kswapd

would wake kcompactd after finishing its reclamation run
● This was launched as LF Linux Kernel Mentorship project in summer 2019
● Working with mentees, we sent patches to LKML
● Based upon community feedback, we decided to implement this as an external daemon instead

Prediction in kernel

● This new implementation is realized in memoptimizer daemon
● memoptimizer uses a sliding window of size 8
● This has been launched as an open source github project at

https://github.com/oracle/memoptimizer (contributions welcomed)
● memoptimizer behavior can be modified using command line options or the configuration file

/etc/sysconfig/memoptimizer or /etc/default/memoptimizer
● It uses syslog logging facility. Verbosity level for logging can be changed with “-v” option or with

“VERBOSE” parameter in configuration file
● With verbosity level of 5, memoptimizer will log all its actions along with reasons for those actions

and reclamation and compaction rates it computes periodically

* Name might change in future

memoptimizer* daemon

https://github.com/oracle/memoptimizer

● Implementing trend analysis requires data sources and system tuning dynamically requires
available knobs

● Linux kernel provides following data sources:
/proc/vmstat : page reclamation and cache page usage
/proc/buddyinfo : per zone count of free pages of various orders
/proc/zoneinfo : per zone watermarks

● Kernel also provides following knobs to tune free memory management:
/proc/sys/vm/watermark_scale_factor: Scale factor for gap between watermarks
/sys/devices/system/node/node%d/compact: Force compaction on a NUMA node

Data sources and control knobs

● memoptimizer gets free page count for each node for each order from/proc/buddyinfo and uses
this data to compute a trend line for each order page for each zone

● Current per zone watermarks are read from /proc/zoneinfo
● memoptimizer computes current reclamation and compaction rates and uses those values in

predicting potential exhaustion of order 0 and higher pages.
● Reclamation rate is computed from reclaimed pages reported in /proc/vmstat. Compaction rate

is computed by looking at the change in number of higher order pages in /proc/buddyinfo
● memoptimizer forces longer reclamation by scaling up watermarks by writing a new value to

/proc/sys/vm/watermark_scale_factor
● It forces compaction on a node by writing to /sys/devices/system/node/node%d/compact

memoptimizer data and actions

● A workload that performs significant amount of I/O, especially file I/O where files are created and
destroyed frequently can cause significant number of reclaimable pages tied up in page/buffer
cache

● A workload comprised of 9 parallel dd to SSDs and a kernel compile with “make -j60” on a 96
processor system with 768GB of memory creates a suitable workload for testing effectiveness of
memoptimizer daemon

● memoptimizer attempts to minimize the number of allocation/compaction failures as well as stalls.
Number of allocation and compaction stalls over a test run gives a good insight into its
effectiveness

Test and Metric

● With the previously identified workload, tests were run without memoptimizer and then with
memoptimizer running. Number of stalls as reported by /proc/vmstat were measured and
recorded over a roughly 140 minute period

● Now for the result:

Proof is in the pudding

No memoptimizer Memoptimizer running

4.1.12 (UEK4) 5529 623

4.14.35 (UEK5) 3216 42

5.4.17 (UEK6) 212 1

kernel.org 5.14 190 0

● memoptimizer monitors system changes and models system behavior. This can have further uses
● Memoptimizer has evolved to include capabilities to:

● Make a one time change to a system tunable at startup

● Update values of system tunables upon system events, e.g. change in number of hugepages

Doing more with memoptimizer

● Make use of /proc/sys/vm/compaction_proactiveness to force gentler compaction

● Add more knobs under /proc/sys/vm for automated tuning (for example
watermark_boost_factor, swappiness, min_free_kbytes, others…)

● Interaction with cgroups

● Possibly use data gathered by DAMON and PSI

Future possibilities for memoptimizer

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

	Slide 1
	Title
	Agenda
	Kernel runs out of free pages
	Where did all memory go
	Watermarks
	Setting watermarks
	Playing with watermarks
	Time to rethink
	Adaptive and proactive watermarks
	Method of least squares
	Modeling
	Actions
	Prediction in kernel
	memoptimizer daemon
	Data sources and control knobs
	memoptimizer data and actions
	Test and metric
	Proof is in the pudding
	Doing more with memoptimizer
	Future possibilities
	Slide 22

