

Rust for Linux:
Writing Safe

Abstractions &
Drivers

Miguel Ojeda
ojeda@kernel.org

Key concepts

So, what does Rust offer?

So, what does Rust offer?

UB
🏖

So, what does Rust offer?

UB
🏖*

*Conditions apply

What is Undefined Behavior?

— N2596 C2x Working Draft

Key concepts

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe.

This means it has safety preconditions.

Callers have to declare they are upholding the contract by using an unsafe block.

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract by using an unsafe block.

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract by using an unsafe block.

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract by using an unsafe block.

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract by using an unsafe block.

Key concepts

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract.

Unsafe function

int f(int a, int b) {
 return a / b;
}

Unsafe function

int f(int a, int b) {
 return a / b;
}

UB ∀x f(x, 0);

Unsafe function

int f(int a, int b) {
 return a / b;
}

UB ∀x f(x, 0);
UB f(INT_MIN, -1);

Safe function

int f(int a, int b) {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

Key concepts

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling an unsafe function or
dereferencing a raw pointer).

Unsafe block: a block of code prefixed with the unsafe keyword.

Key concepts

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling an unsafe function or
dereferencing a raw pointer).

Unsafe block: a block of code prefixed with the unsafe keyword.

Key concepts

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling an unsafe function or
dereferencing a raw pointer).

Unsafe block: a block of code prefixed with the unsafe keyword.

Key concepts

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling an unsafe function or
dereferencing a raw pointer).

Unsafe block: a block of code prefixed with the unsafe keyword.

Key concepts

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling unsafe functions or
dereferencing raw pointers).

Unsafe block: a block of code prefixed with the unsafe keyword.

(Un)safe functions vs. (un)safe code

Safe functions may or may not contain unsafe blocks.

Unsafe functions may or may not contain unsafe blocks.

(Un)safe functions vs. (un)safe code

Safe function

with only safe code

Safe function

with unsafe code

Unsafe function

with only safe code

Unsafe function

with unsafe code

Safe function with only safe code

fn f(x: i32) -> i32 {
 x + 1
}

Unsafe function with unsafe code

unsafe fn f(p: *const i32) -> i32 {
 unsafe { *p }
}

Safe function with unsafe code

unsafe fn g(p: *const i32) -> i32 {
 unsafe { *p }
}

fn f() -> i32 {
 unsafe { g(&42) }
}

mod m {
 pub struct S {
 p: *const i32,
 }

 impl S {
 pub fn new() -> Self {
 Self { p: &42 }
 }

 pub unsafe fn set(&mut self, p: *const i32) {
 self.p = p;
 }

 pub fn dereference(&self) -> i32 {
 unsafe { *self.p }
 }
 }
}

Unsafe function with only safe code

What happens if we make a mistake?

If a safe function is not actually safe, then it is called unsound.

This is considered a bug.

In the standard library, a CVE is assigned.

What happens if we make a mistake?

If a safe function is not actually safe, then it is called unsound.

This is considered a bug.

In the standard library, a CVE is assigned.

fn f(p: *const i32) -> i32 {
 unsafe { *p }
}

Common misconceptions

“Safe functions cannot trigger UB”

They should not, but if they are unsound, then they can.

This is considered a bug.

“Unsafe block means UB will necessarily be produced”

UB should never be produced.

An unsafe block only means the developer is the one responsible to avoid
UB, instead of the compiler.

Common misconceptions

“Safe functions cannot trigger UB”

They should not, but if they are unsound, then they can.

This is considered a bug.

“Unsafe block means UB will necessarily be produced”

UB should never be produced.

An unsafe block only means the developer is the one responsible to avoid
UB, instead of the compiler.

Common misconceptions

“Safe functions cannot trigger UB”

They should not, but if they are unsound, then they can.

This is considered a bug.

“Unsafe block means UB will necessarily be produced”

UB should never be produced.

An unsafe block only means the developer is the one responsible to avoid
UB, instead of the compiler.

Common misconceptions

“Safe functions cannot trigger UB”

They should not, but if they are unsound, then they can.

This is considered a bug.

“Unsafe block means UB will necessarily be produced”

UB should never be produced.

An unsafe block only means the developer is the one responsible to avoid
UB, instead of the compiler.

The safe/unsafe split in the kernel

The goal is:

To write leaf modules / drivers in safe Rust (ideally 100%).

To keep unsafe code in the abstractions / subsystems.

Calling the C side of the kernel requires an unsafe block.

This is the reason we aim to forbid calling the C side directly.

The safe/unsafe split in the kernel

The goal is:

To write leaf modules / drivers in safe Rust (ideally 100%).

To keep unsafe code in the abstractions / subsystems.

Calling the C side of the kernel requires an unsafe block.

This is the reason we aim to forbid calling the C side directly.

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

Module

bindgen

bindings
crate

Rust tree Linux tree

Setup

Note

These instructions are meant as an example.

For the latest instructions and details, see the guide at:

Documentation/rust/quick-start.rst

Kernel tree

Checkout the rust branch from:

https://github.com/Rust-for-Linux/linux.git

To follow these examples on your own, checkout the mentor branch from:

https://github.com/ojeda/linux.git

LLVM toolchain

Prefer LLVM=1 builds.

CC=clang should also work.

GCC builds may or may not work.

In all cases, libclang is needed for bindgen.

Rust toolchain

There are several ways to install Rust – here the rustup approach is shown.

$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
info: downloading installer

Welcome to Rust!

...

Current installation options:

 default host triple: x86_64-unknown-linux-gnu
 default toolchain: stable (default)
 profile: default
 modify PATH variable: yes

Rust toolchain

info: profile set to 'default'
info: default host triple is x86_64-unknown-linux-gnu
info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu'
info: latest update on 2021-11-01, rust version 1.56.1 (59eed8a2a 2021-11-01)
info: downloading component 'cargo'
...
info: installing component 'cargo'
...
info: default toolchain set to 'stable-x86_64-unknown-linux-gnu'

 stable-x86_64-unknown-linux-gnu installed - rustc 1.56.1 (59eed8a2a 2021-11-01)

Rust is installed now. Great!

...

Rust standard library sources

We also need to download the core library sources on top.

$ rustup component add rust-src
info: downloading component 'rust-src'
info: installing component 'rust-src'

Bindgen

This is the tool that generates Rust code from C headers.

$ cargo install --locked --version 0.56.0 bindgen
 Updating crates.io index
 Downloaded bindgen v0.56.0
 Downloaded 1 crate (198.3 KB) in 0.17s
 Installing bindgen v0.56.0
 Downloaded proc-macro2 v1.0.24
 ...
 Downloaded cfg-if v0.1.10
 Downloaded 35 crates (2.0 MB) in 0.32s
 Compiling libc v0.2.80
 ...
 Compiling cexpr v0.4.0
 Finished release [optimized] target(s) in 1m 06s
 Installing .../.cargo/bin/bindgen
 Installed package `bindgen v0.56.0` (executable `bindgen`)

The example subsystem

drivers/mentor/

Extremely simple “subsystem”, a key-value store.

Provides a few “addresses” to read and write from.

Some of them cannot be read from, some cannot be written to.

A particular address can be used to fetch the number of total writes so far.

We will ignore data races here — the subsystem takes care of locking.

Enable it in Device Drivers -> Mentor Support.

Header
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * The example mentor subsystem: a key-value "database".
 *
 * Valid addresses go from 0x00 to 0x05. Accessing others is UB.
 *
 * Reading address 0x05 gives the total number of writes.
 * Writing to it is UB.
 */
#ifndef __LINUX_MENTOR_H
#define __LINUX_MENTOR_H

#include <linux/compiler.h>

#define MENTOR_TOTAL_WRITES_ADDR 0x05

/* Public interface */
#define mentor_read(addr) \
 __mentor_read(addr)
void mentor_write(u8 addr, u32 value);

/* Do not use! */
u32 __mentor_read(u8 addr);

#endif /* __LINUX_MENTOR_H */

Bindings

To use this C header from Rust, we need to generate the bindings to it.

bindgen will read the header and generate Rust code from it.

It is invoked automatically by Kbuild; but we need to add the header to a list.

In the future, how this is specified will likely change.

diff --git a/rust/kernel/bindings_helper.h
b/rust/kernel/bindings_helper.h
index b01169f7609f..d1cc999679bc 100644
--- a/rust/kernel/bindings_helper.h
+++ b/rust/kernel/bindings_helper.h
@@ -19,6 +19,7 @@
 #include <linux/of_platform.h>
 #include <linux/security.h>
 #include <asm/io.h>
+#include <linux/mentor.h>

Helpers

For C macros that are not trivial #define’s, we need to create a helper.

diff --git a/rust/helpers.c b/rust/helpers.c
index b42ce8405d68..e65fefd221f3 100644
--- a/rust/helpers.c
+++ b/rust/helpers.c
@@ -12,6 +12,7 @@
 #include <linux/platform_device.h>
 #include <linux/security.h>
 #include <asm/io.h>
+#include <linux/mentor.h>

 __noreturn void rust_helper_BUG(void)
 {
@@ -323,6 +324,12 @@ void rust_helper_write_seqcount_end(seqcount_t *s)
 }
 EXPORT_SYMBOL_GPL(rust_helper_write_seqcount_end);

+u32 rust_helper_mentor_read(u8 addr)
+{
+ return mentor_read(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_mentor_read);
+

Writing a Rust module

Boilerplate
// SPDX-License-Identifier: GPL-2.0

//! Mentor test

#![no_std]
#![feature(allocator_api, global_asm)]

use kernel::{mentor, prelude::*, str::CStr, ThisModule};

module! {
 type: MentorTest,
 name: b"mentor_test",
 author: b"Rust for Linux Contributors",
 description: b"Mentor Test",
 license: b"GPL v2",
 params: {
 write_addr: u8 {
 default: 0,
 permissions: 0,
 description: b"Address to write",
 },
 write_value: u32 {
 default: 42,
 permissions: 0,
 description: b"Value to write",
 },
 },
}

Implementation (no safe abstraction!)
struct MentorTest;

impl KernelModule for MentorTest {
 fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
 let addr = *write_addr.read();
 let value = *write_value.read();

 pr_info!("Writing value {} to address {}\n", value, addr);
 unsafe { bindings::mentor_write(addr, value) };

 pr_info!("Reading from address {}\n", addr);
 let value = unsafe { bindings::mentor_read(addr) };
 pr_info!("Read value = {}\n", value);

 let total_writes = unsafe { bindings::mentor_read(bindings::MENTOR_TOTAL_WRITES_ADDR as u8) };
 pr_info!("Total writes = {}\n", total_writes);

 // We can produce undefined behavior, just like in C.
 let bad_addr = 0x42;
 pr_info!("Reading from address {}\n", bad_addr);
 let _ = unsafe { bindings::mentor_read(bad_addr) };

 Ok(MentorTest)
 }
}

Writing a Safe Abstraction

The abstractions are currently in rust/kernel/

This may also change in the future.

Boilerplate

// SPDX-License-Identifier: GPL-2.0

//! Mentor subsystem.
//!
//! C headers: [`include/linux/mentor.h`](../../../../include/linux/mentor.h)

use crate::{bindings, error::Error, Result};

const TOTAL_WRITES_ADDR: u8 = bindings::MENTOR_TOTAL_WRITES_ADDR as u8;

fn is_valid(addr: u8) -> bool {
 addr < TOTAL_WRITES_ADDR
}

Read
/// Reads from an address.
///
/// To read the total number of writes, use [`read_total_writes`] instead.
///
/// Returns an error if the address is invalid.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::mentor;
/// # fn test() -> Result {
/// let result = mentor::read(0x01)?;
/// # Ok(())
/// # }
/// ```
pub fn read(addr: u8) -> Result<u32> {
 if !is_valid(addr) {
 return Err(Error::EINVAL);
 }

 // SAFETY: FFI call, we have verified the address is valid.
 Ok(unsafe { bindings::mentor_read(addr) })
}

Write
/// Writes a value to an address.
///
/// Returns an error if the address is invalid.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::mentor;
/// # fn test() -> Result {
/// mentor::write(0x01, 42)?;
/// # Ok(())
/// # }
/// ```
pub fn write(addr: u8, value: u32) -> Result {
 if !is_valid(addr) {
 return Err(Error::EINVAL);
 }

 // SAFETY: FFI call, we have verified the address is valid.
 unsafe { bindings::mentor_write(addr, value) }

 Ok(())
}

Read total number of writes

/// Reads the total number of writes (from the special Mentor address).
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::mentor;
/// # fn test() {
/// let total_writes = mentor::read_total_writes();
/// # }
/// ```
pub fn read_total_writes() -> u32 {
 // SAFETY: FFI call, this address is always valid.
 unsafe { bindings::mentor_read(TOTAL_WRITES_ADDR) }
}

It is quite fast and does not require Sphinx.

Creating the documentation

$ make LLVM=1 -j3 rustdoc
 CALL scripts/atomic/check-atomics.sh
 CALL scripts/checksyscalls.sh
 RUSTC L rust/kernel.o
 EXPORTS rust/exports_kernel_generated.h
 RUSTDOC .../rustlib/src/rust/library/core/src/lib.rs
 RUSTDOC H rust/macros/lib.rs
 RUSTDOC rust/compiler_builtins.rs
 RUSTDOC rust/alloc/lib.rs
 RUSTDOC rust/kernel/lib.rs

Tests

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn test_is_valid() {
 assert!(is_valid(0x00));
 assert!(is_valid(0x04));
 assert!(!is_valid(0x05));
 }
}

Running the tests

$ make LLVM=1 -j3 rusttest
 CALL scripts/atomic/check-atomics.sh
 CALL scripts/checksyscalls.sh
 RUSTSYSROOT
 Compiling compiler_builtins v0.1.49
 ...
 Finished test [unoptimized + debuginfo] target(s) in 46.80s
 Running unittests (rust/test/dummy/target/x86_64-unknown-linux-gnu/debug/deps/dummy-ecc6d3fa6cf7d238)

...

running 5 tests
.....
test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 900 filtered out; finished in 0.01s

 RUSTC TL rust/kernel/lib.rs
 RUSTDOC T rust/kernel/lib.rs

running 52 tests
.ii......ii...
test result: ok. 48 passed; 0 failed; 4 ignored; 0 measured; 0 filtered out; finished in 17.34s

Formatting the code

$ make LLVM=1 -j3 rustfmt

Back to the Rust module

Implementation (no safe abstraction!)
struct MentorTest;

impl KernelModule for MentorTest {
 fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
 let addr = *write_addr.read();
 let value = *write_value.read();

 pr_info!("Writing value {} to address {}\n", value, addr);
 unsafe { bindings::mentor_write(addr, value) };

 pr_info!("Reading from address {}\n", addr);
 let value = unsafe { bindings::mentor_read(addr) };
 pr_info!("Read value = {}\n", value);

 let total_writes = unsafe { bindings::mentor_read(bindings::MENTOR_TOTAL_WRITES_ADDR as u8) };
 pr_info!("Total writes = {}\n", total_writes);

 // We can produce undefined behavior, just like in C.
 let bad_addr = 0x42;
 pr_info!("Reading from address {}\n", bad_addr);
 let _ = unsafe { bindings::mentor_read(bad_addr) };

 Ok(MentorTest)
 }
}

Implementation (using the safe abstraction)
struct MentorTest;

impl KernelModule for MentorTest {
 fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
 let addr = *write_addr.read();
 let value = *write_value.read();

 pr_info!("Writing value {} to address {}\n", value, addr);
 mentor::write(addr, value)?;

 pr_info!("Reading from address {}\n", addr);
 let value = mentor::read(addr)?;
 pr_info!("Read value = {}\n", value);

 let total_writes = mentor::read_total_writes();
 pr_info!("Total writes = {}\n", total_writes);

 // Whatever we try to do here, as long as it is safe code,
 // we cannot produce UB.
 let bad_addr = 0x42;
 pr_info!("Reading from address {}\n", bad_addr);
 if mentor::read(bad_addr).is_err() {
 pr_info!("Expected failure\n");
 }

 Ok(MentorTest)
 }
}

Rust for Linux:
Writing Safe

Abstractions &
Drivers

Miguel Ojeda
ojeda@kernel.org

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

Backup slides

Common misconceptions

“Rust should only be used if there is no unsafe code in your program”

“Safe Rust is a compiler mode”

“Safe Rust is a subset like MISRA C”

Safe and unsafe Rust are intended to be mixed, even within the same
function.

Virtually all Rust programs contain unsafe code when taking into account
dependencies (e.g. the standard library).

Unchecked read

/// Reads from an address (unchecked version).
///
/// To read the total number of writes, use [`read_total_writes`] instead.
///
/// # Safety
///
/// The address must be valid.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::mentor;
/// # fn test() {
/// let result = unsafe { mentor::read_unchecked(0x01) };
/// # }
/// ```
pub unsafe fn read_unchecked(addr: u8) -> u32 {
 // SAFETY: FFI call, the caller guarantees the address is valid.
 unsafe { bindings::mentor_read(addr) }
}

Unchecked write

/// Writes a value to an address (unchecked version).
///
/// # Safety
///
/// The address must be valid.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::mentor;
/// # fn test() {
/// unsafe { mentor::write_unchecked(0x01, 42); }
/// # }
/// ```
pub unsafe fn write_unchecked(addr: u8, value: u32) {
 // SAFETY: FFI call, the caller guarantees the address is valid.
 unsafe { bindings::mentor_write(addr, value) }
}

Running the mentor_test module

$ insmod mentor_test.ko write_addr=0x03 write_value=42

[0.952950] mentor_test: --- Without an abstraction (do not use!)
[0.953950] mentor_test: Writing value 42 to address 3
[0.954950] mentor_test: Reading from address 3
[0.954950] mentor_test: Read value = 42
[0.955950] mentor_test: Total writes = 1
[0.955950] mentor_test: Reading from address 66
[0.955950] mentor: undefined behavior!

[0.955950] mentor_test: --- With a safe abstraction
[0.956950] mentor_test: Writing value 42 to address 3
[0.956950] mentor_test: Reading from address 3
[0.956950] mentor_test: Read value = 42
[0.956950] mentor_test: Total writes = 2
[0.957949] mentor_test: Reading from address 66
[0.957949] mentor_test: Expected failure

Safety

Safety in Rust

=
No undefined behavior

Safety

Safety in Rust

≠
Safety in “safety-critical”

as in functional safety (DO-178B/C, ISO 26262, EN 50128…)

Is avoiding UB that important?

~70%
of vulnerabilities in C/C++ projects come from UB

See more at https://www.memorysafety.org/docs/memory-safety/

https://www.memorysafety.org/docs/memory-safety/

Some examples where Rust helps

Building an abstraction

Supported architectures

arm (armv6 only)

arm64

powerpc (ppc64le only)

riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

...so far!
32-bit and other restrictions should be easy to remove

Kernel LLVM builds work for mips and s390

GCC codegen paths should open up more

Rust codegen paths for the kernel

rustc_codegen_llvm Rust GCCrustc_codegen_gcc

Main one
Already passes

most rustc tests
Expected in 1-2 years

(rough estimate)

Documentation

Documentation code

/// Wraps the kernel's `struct task_struct`.
///
/// # Invariants
///
/// The pointer `Task::ptr` is non-null and valid. Its reference count is also non-zero.
///
/// # Examples
///
/// The following is an example of getting the PID of the current thread with
/// zero additional cost when compared to the C version:
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::task::Task;
///
/// # fn test() {
/// Task::current().pid();
/// # }
/// ```
pub struct Task {
 pub(crate) ptr: *mut bindings::task_struct,
}

Rust code has access to conditional compilation based on the kernel config

Conditional compilation

#[cfg(CONFIG_X)] // `CONFIG_X` is enabled (`y` or `m`)
#[cfg(CONFIG_X="y")] // `CONFIG_X` is enabled as a built-in (`y`)
#[cfg(CONFIG_X="m")] // `CONFIG_X` is enabled as a module (`m`)
#[cfg(not(CONFIG_X))] // `CONFIG_X` is disabled

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms

No undocumented public APIs No unneeded panics

No implicit unsafe block No infallible allocations

Docs follows Rust standard library style ...

// SAFETY proofs for all unsafe blocks

Clippy linting enabled

Automatic formatting enforced
Aiming to be as strict as possible

Abstractions code

/// Wraps the kernel's `struct file`.
///
/// # Invariants
///
/// The pointer `File::ptr` is non-null and valid.
/// Its reference count is also non-zero.
pub struct File {
 pub(crate) ptr: *mut bindings::file,
}

impl File {
 /// Constructs a new [`struct file`] wrapper from a file descriptor.
 ///
 /// The file descriptor belongs to the current process.
 pub fn from_fd(fd: u32) -> Result<Self> {
 // SAFETY: FFI call, there are no requirements on `fd`.
 let ptr = unsafe { bindings::fget(fd) };
 if ptr.is_null() {
 return Err(Error::EBADF);
 }

 // INVARIANTS: We checked that `ptr` is non-null, so it is valid.
 // `fget` increments the ref count before returning.
 Ok(Self { ptr })
 }

 // ...
}

Driver code

static int pl061_resume(struct device *dev)
{
 int offset;

 struct pl061 *pl061 = dev_get_drvdata(dev);

 for (offset = 0; offset < PL061_GPIO_NR; offset++) {
 if (pl061->csave_regs.gpio_dir & (BIT(offset)))
 pl061_direction_output(&pl061->gc, offset,
 pl061->csave_regs.gpio_data &
 (BIT(offset)));
 else
 pl061_direction_input(&pl061->gc, offset);

 }

 writeb(pl061->csave_regs.gpio_is, pl061->base + GPIOIS);
 writeb(pl061->csave_regs.gpio_ibe, pl061->base + GPIOIBE);
 writeb(pl061->csave_regs.gpio_iev, pl061->base + GPIOIEV);
 writeb(pl061->csave_regs.gpio_ie, pl061->base + GPIOIE);

 return 0;
}

fn resume(data: &Ref<DeviceData>) -> Result {

 let inner = data.lock();
 let pl061 = data.resources().ok_or(Error::ENXIO)?;

 for offset in 0..PL061_GPIO_NR {
 if inner.csave_regs.gpio_dir & bit(offset) != 0 {
 let v = inner.csave_regs.gpio_data & bit(offset) != 0;
 let _ = <Self as gpio::Chip>::direction_output(
 data, offset.into(), v);
 } else {
 let _ = <Self as gpio::Chip>::direction_input(
 data, offset.into());
 }
 }

 pl061.base.writeb(inner.csave_regs.gpio_is, GPIOIS);
 pl061.base.writeb(inner.csave_regs.gpio_ibe, GPIOIBE);
 pl061.base.writeb(inner.csave_regs.gpio_iev, GPIOIEV);
 pl061.base.writeb(inner.csave_regs.gpio_ie, GPIOIE);

 Ok(())
}

— https://lwn.net/Articles/863459/

https://lwn.net/Articles/863459/

Safety examples

abort()s in C

are
Rust-safe

⇒

Safety examples

abort()s in C

are
Rust-safe

⇒

Even if your company goes bankrupt.

Safety examples

abort()s in C

are
Rust-safe

⇒

Even if your company goes bankrupt.

Even if somebody is injured.

Safety examples

Rust panics

are
Rust-safe

⇒

Safety examples

Kernel panics

are
Rust-safe

⇒

Safety examples

Uses after free, null derefs, double frees,

OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

are not
Rust-safe

⇒

Safety examples

Uses after free, null derefs, double frees,

OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

are not
Rust-safe

⇒

Even if your system still works.

Safety examples

⇒

Race conditions

are
Rust-safe

Safety examples

⇒

Memory leaks

are
Rust-safe

Safety examples

⇒

Deadlocks

are
Rust-safe

Safety examples

⇒

Integer overflows

are
Rust-safe

