Paul E. McKenney, Meta Platforms

Linux Foundation Live Mentorship Series, February 23, 2022

Unraveling RCU-Usage Mysteries

(Additional Use Cases)

© 2021 Facebook Corporation

RCU Usage: Overview

- Quick Review
- You Are Here
- Use Cases:
 - Add-only list, delete-only list, existence guarantee, type-safe memory, light-weight garbage collector, quasi reader-writer lock redux, quasi multi-version concurrency control, and quasi reference count

Quick Review [1]

[1] https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/

Quick Review

- Global agreement is expensive
 - Finite speed of light and non-zero-sized atoms...
- So use both spatial & temporal synchronization
- RCU is one way to do this
 - Hazard pointers provide another way

Core RCU API: Temporal vs. Spatial

- rcu_read_lock(): Begin reader
- rcu_read_unlock(): End reader
- synchronize_rcu(): Wait for pre-existing readers
- call_rcu(): Invoke function after pre-existing readers complete
- rcu_dereference(): Load RCU-protected pointer
- rcu_dereference_protected(): Ditto, but update-side locked
- rcu_assign_pointer(): Update RCU-protected pointer

RCU Semantics (Graphical)

Time (really ordering)

RCU Semantics (Restrictions)

Stale and inconsistent data OK

Need fully fresh and consistent data

1. RCU provides ABA protection for update-friendly mechanisms (light-weight garbage collector) 2. RCU provides bounded wait-free read-side primitives for real-time use

And RCU is most frequently used for linked data structures.

Cost of Global Agreement

Time

RCU vs. Cost of Global Agreement

RCU Semantics (Spatio-Temporal)

 10^{+}

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard

RCU Spatio-Temporal Values

You Are Here

You Are Here

Add-Only List

You Are Here: Add-Only List

First, Add/Delete List

```
// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
        do_something(p);
rcu_read_unlock();
```

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Remove Code For Add-Only List

```
// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt, true)
        do_something(p);
rcu_read_unlock();
```

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Resulting Code For Add-Only List

// Reader
list_for_each_entry_rcu(p, &rl, nxt, true)
 do_something(p);

```
// Updater
spin_lock(&ml);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
```

Operation of Add-Only List

Key: 📕 Dangerous for updates: all readers can access

Safe for updates: inaccessible to all readers

For example, if some of that "other data" is mutable.

RCU to Add-Only List

- Add to publish/subscribe for linked structure:
 - Nothing at all!!!

Delete-Only List

You Are Here: Delete-Only List

Again, Start With Add/Delete List

```
// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
        do_something(p);
rcu_read_unlock();
```

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Remove Code For Delete-Only List

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Why? Maybe you have a system that can remove failing devices, but not add new ones.

Resulting Code For Delete-Only List

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Operation of Delete-Only List

Key: 🧧 Still dangerous for updates: pre-existing readers can access

For example, if some of that "other data" is mutable.

RCU to Delete-Only List

- **Remove** from existence guarantee
 - Publish/subscribe for linked structure

Existence Guarantee

You Are Here: Existence Guarantee

Code For Existence Guarantee (Lock)

```
// Reader-then-updater
rcu_read_lock();
q = NULL;
list_for_each_entry_rcu(p, &rl, nxt)
    if (p->key == key) {
        q = p;
        spin_lock(&g->lock); // RCU provides existence guarantee
        break;
rcu read unlock();
if (q)
    if (!p->deleted)
        do_some_update(p); // Lock protects *p
    spin unlock(&g->lock);
}
```

This could be used to implement the aforementioned per-node locking.

Code For Existence Guarantee (Lock)

```
// Updater: List mutation
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_unlock(&p->lock);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Synchronization Responsibilities

Synchronization Responsibilities

The ->lock protects "other data" and prevents the corresponding node from being removed.

RCU to Existence Guarantee

- Add to the combination of wait-for-readers and publish/subscribe for linked structure:
 - Heap allocator
 - Deferred reclamation

Type-Safe Memory

You Are Here: Type-Safe Memory

Type-Safe Memory (TSM)

• Can be freed and reallocated, but its type will not change: SLAB_TYPESAFE_BY_RCU

Approximation of "real" TSM

- Provides better cache locality because memory can be freed and reallocated immediately
 - No need to wait for a grace period
- But readers need a validation step

TSM State Diagram

TSM State Diagram

TSM State Diagram

Most types of readers need to stop the churn!

TSM Readers Stopping the Churn

- Use a reference counter
- Avoid freed items: atomic_add_unless()
- Avoid reallocated items: Recheck key

Working code available at typesafe.2022.02.22a in -rcu tree kernel/rcu/typesafe.c.

Structure and Cache

```
struct foo {
    struct list_head lh;
    atomic_t ref;
    int key;
};
```

static struct kmem_cache *foo_cache;

// Destroy kmem_cache, which finds your memory leaks! ;-)
kmem_cache_destroy(foo_cache);

Allocate and Initialize

```
static struct foo *foo_alloc(int key)
{
    struct foo *p;
    p = kmem_cache_alloc(foo_cache, GFP_KERNEL);
    if (!p)
        return NULL;
    p->key = key;
    atomic_set_release(&p->ref, 1); // Implicit ref for data structure
    return p;
```

Reader Tries To Obtain Reference

```
static struct foo *foo_get_key(int key)
{
    struct foo *p;
    rcu_read_lock();
    p = foo_lookup(key);
   if (!p) {
    } else if (!atomic_add_unless(&p->ref, 1, 0)) {
        p = NULL;
    } else if (p->key != key) {
        foo_put(p);
        p = NULL;
    }
    rcu_read_unlock();
    return p;
```

Reader/Remover Releases Reference

```
static void foo_put(struct foo *p)
{
    if (atomic_dec_and_test(&p->ref)) {
        // Reader attempting to obtain reference will now fail.
        kmem_cache_free(foo_cache, p);
    }
```

Why Not Just Use Locking???

Why Not Just Use Locking???

- One, kmem_cache_alloc() sometimes returns uninitialized memory
 - So initialization cannot tell whether or not to invoke spin_lock_init()
- Two, kmem_cache_zalloc() clobbers lock

TSM State Diagram Redux

Without kmem_cache_zalloc(), "Init" cannot detect allocation from new slab!!!

Do Readers Really Need Atomics???

Do Readers Really Need Atomics???

- Strangely enough, not always!
 - But note that the atomics are per-object, not global
- The lifetime of the typesafe item might be known to be longer than some other object
 - Then a reference to that object stabilizes the item
 - The ext4 filesystem relies on this, to my surprise [1]
 - And thus no atomics for reader validation!

RCU to Type-Safe Memory

- Add to the combination of wait-for-readers and publish/subscribe for linked structure:
 - Slab allocator
 - Deferred slab reclamation

Light-Weight Garbage Collector

You Are Here: Light-Weight GC

RCU: Lightweight GC for NBS

- Many non-blocking algorithms subject to ABA
 - Where reallocated memory causes failure
 - Example: FIFO single-element push/pop
 - (Single-element push with full-stack pop tolerates ABA-style reallocation)

RCU: Lightweight GC for NBS (Code)

```
struct node_t* top;
```

```
void list_push(value_t v)
{
    struct node_t *newnode = malloc(sizeof(*newnode));
    struct node_t *oldtop;
    newnode->val = v;
    oldtop = READ_ONCE(top);
    do {
        newnode->next = oldtop;
        oldtop = cmpxchg(&top, newnode->next, newnode);
    } while (newnode->next != oldtop);
```

RCU: Lightweight GC for NBS (Code)

```
struct node t *list pop(void)
  struct node t *oldp;
  struct node t *p;
  p = READ ONCE(top);
  do {
    if (!p)
       return NULL;
    oldp = p;
  } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
  return oldp;
```

Initial State

First list_pop() is Preempted

Second list_pop()

Third list_pop()

list_push(dog)

First list_pop() Resumes

First list_pop() Completes

dog (was cat)

This is the dreaded ABA problem!

First list_pop() Completes

This is the dreaded ABA problem! Prevent this by preventing reallocation of cat...

(was cat)

RCU: Lightweight GC for NBS (Code)

```
struct node t *list pop(void)
  struct node t *oldp;
  struct node t *p;
  rcu read lock();
  p = READ ONCE(top);
  do {
    if (!p) {
       rcu read unlock();
       return NULL:
    oldp = p;
  } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
  rcu read unlock();
  return oldp;
```

Also need to deferred-free nodes popped from the stack.

RCU to Light-Weight GC

- Add to type-safe memory:
 - Non-blocking synchronization

Quasi Reader-Writer Lock (Redux)

Read-To-Write Upgrade

Read-To-Write Upgrade

- While traversing list, reader sees need to add or delete a list item
- This self-deadlocks with reader-writer locking
 - Deadlocks with special reader-to-writer upgrade primitives, unless they are conditional
 - In which case, reader must handle upgrade failure
- What about RCU?

Yet Again, Start With Add/Delete List

```
// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Add Locked Deletion Mid-Traversal

```
// Reader
rcu read lock();
list_for_each_entry_rcu(p, &rl, nxt)
   if (p->need delete) {
        spin_lock(&ml); // No deadlock with rcu_read_lock()
        if (p->need_delete) {
            p->need delete = false;
            list del rcu(p); // Leaves list head ->next pointer alone
            kfree_rcu(p, rh);
        spin unlock(&ml);
    }
rcu_read_unlock();
// Updater unchanged
```

Ignore Deleted Item

Ignore Deleted Item

- In some cases, doing something with an already-deleted item is unacceptable
 - Poster child: System V IPC
 - Can't allow sending a message on deleted mq!
- How can RCU accommodate this situation?

This Time, Start With List Deletion

```
// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Modifications To Deletion

```
// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_lock(&p->lock);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
```

Modifications To Reader

```
// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) {
    spin_lock(&p->lock); // Lock item, not search structure
    if (!p->deleted)
        do_something(p);
    spin_lock(&p->lock);
}
rcu_read_unlock();
```

RCU to Quasi Reader-Writer Lock

- Add to existence guarantee:
 - RCU readers as read-held reader-writer lock
 - Spatial as well as temporal synchronization
 - (Optional) Read-to-write upgrade
 - (Optional) Bridge to per-object lock or reference
 - (Optional) Ignore deleted objects

Quasi MV Consistency Control

You Are Here: Quasi MVCC

Pathname-Lookup Use Case

Pathname-Lookup Use Case

- Given a pathname, find corresponding inode
 - Traverse in-memory directory-entry cache
 - Do this locklessly, but if something bad happens, fall back to more heavily synchronized traversal
 - "Something bad" might be a path segment not in the directory-entry cache
 - Or...

Looking up: "/this/pathname/does/not/exist"

Meanwhile: "mv /this/pathname /that"

Looking up: "/this/pathname/does/not/exist"

Done: "mv /that/thing/might/not /that/pathname/does"

Looking up: "/this/pathname/does/not/exist"

We have looked up a pathname that never existed!!!

How to Avoid This Race Condition?

How to Avoid This Race Condition?

- Use sequence locking in conjunction with RCU
 - RCU makes the lockless traversal safe
 - Sequence locking detects renames

Sequence-Locking Core API

- read_seqbegin(): Start reader
- read_seqretry(): End reader and check for retry
 - An overlapping seqlock writer will force a retry
- write_seqlock(): Start writer
- write_sequnlock(): End writer
 - Renames are seqcount writers

Brutally Simplified Pathwalk Code

```
seq = read_seqbegin(&rename_lock);
rcu_read_lock();
```

// Traverse the directory-entry cache

if (read_seqretry(&rename_lock, seq))
 goto rename_retry;

```
rcu_read_unlock(); // Success!
```

Looking up: "/this/pathname/does/not/exist"

We did two renames during the pathname lookup, so ...

Restore Consistency To RCU Readers

- RCU makes traversal safe
- Seqlock rejects inconsistent traversals
- This simply identifies a version
 - More complex schemes can allow concurrent traversals of different versions

RCU to Quasi MVCC

- Add to existence guarantee:
 - Readers include some sort of snapshot operation
 - Constraints on readers and writers:
 - Single object,
 - Sequence locks,
 - Version number(s),
 - Issaquah challenge, ...

Quasi Reference Count

You Are Here: Quasi Reference Count

Quasi Reference Count

- Per-item reference count:
 - rcu_dereference() obtains reference limited to the enclosing RCU read-side critical section
- Bulk reference count:
 - rcu_read_lock() obtains reference on all RCUprotected objects in the system, again limited to the enclosing RCU read-side critical section

- You have already seen it!
 - Many of the earlier examples can be interpreted as quasi reference counting

- You have already seen it!
 - Many of the earlier examples can be interpreted as quasi reference counting
- How can the same code be existence locking, quasi reader-writer locking, ... ???

- You have already seen it!
 - Many of the earlier examples can be interpreted as quasi reference counting
- How can the same code be existence locking, quasi reader-writer locking, ... ???
- What does atomic_inc() do?

- You have already seen it!
 - Many of the earlier examples can be interpreted as quasi reference counting
- How can the same code be existence locking, quasi reader-writer locking, ... ???
- What does atomic_inc() do?
 - Lots of things!!!

- You have already seen it!
 - Many of the earlier examples can be interpreted as quasi reference counting
- How can the same code be existence locking, quasi reader-writer locking, ... ???
- What does atomic_inc() do?
 - Lots of things!!! Just like RCU!

RCU to Quasi Reference Count

- Add to existence guarantee:
 - RCU readers as individual or bulk unconditional reference-count acquisitions
 - (Optional) Bridge to per-object lock or reference

You Are Here

You Are Here

RCU Area of Applicability (Redux)

Stale and inconsistent data OK

Need fully fresh and consistent data

RCU provides ABA protection for update-friendly mechanisms
 RCU provides bounded wait-free read-side primitives for real-time use

- RCU synchronizes in space as well as time
 - But the time and space aspects are deeply intertwined
 - Enables near-zero-cost read-side synchronization
- Several additional example RCU use cases:
 - Add-only list, delete-only list, existence guarantee, type-safe memory, light-weight garbage collector, quasi reader-writer lock redux, quasi multi-version concurrency control, and quasi reference count

- RCU synchronizes in space as well as time
 - But the time and space aspects are deeply intertwined
 - Enables near-zero-cost read-side synchronization
- Several additional example RCU use cases:
 - Add-only list, delete-only list, existence guarantee, type-safe memory, light-weight garbage collector, quasi reader-writer lock redux, quasi multi-version concurrency control, and quasi reference count
- RCU's dirty little secret:
 - RCU is dead simple

- RCU synchronizes in space as well as time
 - But the time and space aspects are deeply intertwined
 - Enables near-zero-cost read-side synchronization
- Several additional example RCU use cases:
 - Add-only list, delete-only list, existence guarantee, type-safe memory, light-weight garbage collector, quasi reader-writer lock redux, quasi multi-version concurrency control, and quasi reference count
- RCU's dirty little secret:
 - RCU is dead simple, but in order to make good used of it, you must change the way that you think about your problem

- "I hear and I forget."
- "I see and I remember."
- "I do and I understand."
- To really understand RCU, play with it.

We Are Here And Done!!!

For More Information

- Part 1: https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/
- "RCU Usage In the Linux Kernel: One Decade Later":
 - http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
 - http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
 - 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481
- "Structured Deferral: Synchronization via Procrastination": http://doi.acm.org/10.1145/2488364.2488549
- Linux-kernel RCU API, 2019 Edition: https://lwn.net/Articles/777036/
- "Stupid RCU Tricks: So you want to torture RCU?": https://paulmck.livejournal.com/61432.html
- Documentation/RCU/* in kernel source
- "Is Parallel Programming Hard, And, If So, What Can You Do About It?", "Deferred Processing" chapter: https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
- Folly-library RCU implementation (also C-language user-space RCU)
- Large piles of information: http://www.rdrop.com/~paulmck/RCU/