

Fuzzing the Linux Kernel

Andrey Konovalov
Senior Software Engineer, Google

March 2nd 2021

• Andrey Konovalov

• Work on Linux kernel bug detectors, fuzzers, and exploit mitigations
– KASAN, syzkaller, Memory Tagging

• xairy.github.io
• @andreyknvl

Who am I?

https://xairy.github.io/
https://twitter.com/andreyknvl

• Network fuzzing via syscalls
– 3 LPE exploits

• External network fuzzing

• External USB fuzzing
– 300+ bugs

My experience with Linux kernel fuzzing

https://github.com/xairy/kernel-exploits
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_network.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://syzkaller.appspot.com/upstream/fixed?manager=ci2-upstream-usb

• I'm biased:
– I use syzkaller (a state-of-the-art Linux kernel fuzzer)

Disclaimer

• But this is:
– Not another syzkaller talk
– A getting-started overview of the Linux kernel fuzzing field
– A best-effort compilation of ideas, tips, and references

https://github.com/google/syzkaller

• Fuzzing
• Fuzzing the Linux kernel

– Overview
– Trinity and syzkaller
– Approaches
– Tips

• Collecting coverage with KCOV
• Final notes

Agenda

Fuzzing

• Fuzzing — feeding in random inputs until the program crashes

Fuzzing

Generate
input

Execute
program Crash?

No

Yes

Great!

• Fuzzing — feeding in random inputs until the program crashes

Programs

• Programs:
– Application
– Library
– Kernel
– Firmware
– ...

• Fuzzing — feeding in random inputs until the program crashes

• — How do we execute the program?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes (or other kinds of bugs)?
• — How do we automate the process?

Fuzzing

• Fuzzing — feeding in random inputs until the program crashes

• — How do we execute the program?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes?
• — How do we automate the process?

Fuzzing

Depend
on the target

(program)

• Let's say we have an XML file parser
• How do we generate inputs for it when fuzzing?

• Idea #1: just generate random data

Generating inputs

if (input[0] == '<')

if (input[1] == 'x')

if (input[2] == 'm')

if (input[3] == 'l')

// Need to reach at least here.

Random inputs

• Parser expects the file to start with "<xml" header
• Fuzzer needs ~2^32 guesses to get past the header check

• Random binary data works poorly as inputs
• So what should we do?
• Generate better inputs
• How?

a. Structured inputs (a.k.a. structure-aware fuzzing)
b. Guided generation (e.g. coverage-guided fuzzing)
c. Collecting a corpus of sample inputs and mutating them

Better inputs

XML_GRAMMAR = {

 "<start>": ["<xml-tree>"],

 "<xml-tree>": ["<text>", "<xml-open-tag><xml-tree><xml-close-tag>",

 "<xml-openclose-tag>", "<xml-tree><xml-tree>"],

 "<xml-open-tag>": ["<<id>>", "<<id> <xml-attribute>>"],

 "<xml-openclose-tag>": ["<<id>/>", "<<id> <xml-attribute>/>"],

 "<xml-close-tag>": ["</<id>>"],

 "<xml-attribute>" : ["<id>=<id>", "<xml-attribute> <xml-attribute>"],

 "<id>": ["<letter>", "<id><letter>"],

 "<text>" : ["<text><letter_space>","<letter_space>"],

 "<letter>": srange(string.ascii_letters + string.digits +"\""+"'"+"."),

 "<letter_space>": srange(string.ascii_letters + string.digits +"\""+"'"+" "+"\t"),

}

Structured inputs

https://www.fuzzingbook.org/html/GreyboxGrammarFuzzer.html#Parsing-and-Recombining-HTML

Coverage-guided generation

Corpus of
inputs

Choose a
random input Mutate New

cover?

Add to corpus

Execute

No

Yes

• Types of signal
– Code coverage (thus, coverage-guided fuzzing)
– Memory state
– ...

Guided generation

• Can combine with structured inputs approach and mutate accordingly
– Inserting/removing tags in case of XML

• Collecting a set of sample input
– XML files in case of XML

• Mutating them and feeding into the program

Collecting corpus

• Can combine with the previous two approaches
– Need to parse samples to mutate with structure awareness

• Write a fuzzer from scratch
– Build simple fuzzer by Michal Melewski
– Fuzzing Like A Caveman by h0mbre

Understanding fuzzing better

https://carstein.github.io/2020/04/18/writing-simple-fuzzer-1.html
https://h0mbre.github.io/Fuzzing-Like-A-Caveman/#

Fuzzing the Linux kernel

• Fuzzing — feeding in random inputs until the program crashes

• — How do we execute the program?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes (or other kinds of bugs)?
• — How do we automate the process?

Fuzzing

• Fuzzing — feeding in random inputs until the kernel crashes

• — How do we run the kernel?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes (or other kinds of bugs)?
• — How do we automate the process?

Kernel fuzzing

• Fuzzing — feeding in random inputs until the kernel crashes

• — How do we run the kernel?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes (or other kinds of bugs)?
• — How do we automate the process?

Kernel fuzzing

• What inputs does the kernel have?

Kernel inputs

Kernel inputs: syscalls

vmlinux
module.ko

Userspace

Kernel

Kernel inputs: external

vmlinux
module.ko

Hardware / Firmware

Userspace

Kernel

Network packets, USB devices, ...

• Syscalls
– Execute a binary

Injecting inputs

• External
– Either from userspace or through hypervisor/emulator
– Userspace

• Network: /dev/tun; USB: /dev/raw-gadget + Dummy UDC/HCD
– Hypervisor/emulator:

• USB: QEMU + usbredir (vUSBf)

https://www.spice-space.org/usbredir.html
https://github.com/schumilo/vUSBf

• Dumb fuzzer generates random blobs
• Smarter fuzzer generates structured blobs

• But the kernel doesn't accept blobs as inputs
– (Except when limiting fuzzing surface to e.g. a single syscall)

Generating inputs

• Most syscalls are used as an API
– A sequence of calls
– Arguments are structured
– Return values / output fields of structures are used in subsequent calls

int fd = open("/dev/something", …);

ioctl(fd, &{0x10, ...});

close(fd);

Input structure: syscalls

• Most syscalls are used as an API
– A sequence of calls
– Arguments are structured
– Return values / output fields of structures are used in subsequent calls

• => API-aware fuzzing
– Inputs are API call sequences
– Generated and mutated accordingly

Input structure: syscalls

• Not all syscalls work as straightforward API
• Or accept simple structures as arguments

• clone, sigaction
– API with callbacks?

• eBPF, KVM (also netfilter?)
– Need to generate valid code
– Script-aware fuzzing? (Something like fuzzilli?)

Input structure: other syscalls

https://github.com/googleprojectzero/fuzzilli

• Network packets
– Might seem like blobs
– More like API due to TCP SYN/ACK numbers, SCTP cookies, etc.

• USB (also FUSE?) is weird
– Host-driven communication
– The fuzzer is responding to API calls
– Not knowing which call will be next

Input structure: external

• Input "structures":
– API
– API with callbacks
– Scripts
– USB-like stuff

• Different from typical random/structured blobs
• A fuzzer should generate and mutate inputs accordingly

Generating inputs

• Compiler instrumentation
– KCOV
– Other hacks piggy-backing on top of GCC/Clang

• Emulator
– TriforceAFL via QEMU
– Unicorefuzz via Unicorn

• Hardware tracing features
– kAFL via Intel PT

Code coverage

https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://www.usenix.org/system/files/woot19-paper_maier.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schumilo.pdf

• Fuzzing — feeding in random inputs until the kernel crashes

• — How do we run the kernel?
• — How do we inject inputs?
• — How do we generate inputs?
• — How do we detect crashes (or other kinds of bugs)?
• — How do we automate the process?

Kernel fuzzing

Running the kernel

Physical device VM / Emulator

Fuzzing surface Native
(includes device drivers)

Only what
the VM supports

Management
(restarting, debugging,

getting kernel logs)

Hard,
hardware gets bricked

Easy

Scalability Buy more devices Spawn more VMs

• Dmitry Vyukov gave a talk about this last week
• Mentorship Session: Dynamic Program Analysis for Fun and Profit [slides]

• TL;DR: Use dynamic bug detectors
– KASAN, KMSAN, KCSAN, …

Detecting bugs

• Write your own detectors
– Checks for logical bugs, asserts, etc.

https://www.youtube.com/watch?v=ufcyOkgFZ2Q
https://linuxfoundation.org/wp-content/uploads/Dynamic-program-analysis_-LF-Mentorship.pdf

• Monitoring kernel log for crashes
• Restarting crashed VMs
• Deduplicating crashes
• Generating reproducers
• Reporting bugs / tracking fixes

• (All that other fun stuff syzkaller/syzbot do)

Automation

Trinity and syzkaller

• Trinity (and similar fuzzers) in essence:
while (true)

syscall(rand(), rand_fd(), rand_struct_of_proper_type());

Trinity

• Infinite stream of syscalls
• API-aware
• No guidance

• syzkaller ~= Trinity +
– notion of a test case (including isolation) +
– coverage-guidance (using KCOV) +
– language to describe API/structures (syzlang) +
– automation (scalability, reproducers, dashboards, syzbot)

• syzkaller: goes deeper, finds more bugs, easier to extend
• Trinity: finds less bugs, easier to deploy as a drop-in binary

syzkaller vs Trinity

https://github.com/google/syzkaller
https://syzkaller.appspot.com/

Fuzzing approaches

• Building kernel code as userspace app and fuzzing that
• Reusing a userspace fuzzer (AFL, libFuzzer, …)
• Using syzkaller
• Writing a fuzzer from scratch

Approaches

• Works for code that is separable from the rest of the kernel
• No need to bother with emulators/hypervisors

Building in userspace

• github.com/iovisor/bpf-fuzzer
• Kernel Fuzzing in Userspace (fuzzing ASN.1) by Eric Sesterhenn

https://github.com/iovisor/bpf-fuzzer
https://www.x41-dsec.de/lab/blog/kernel_userspace/

• Take a userspace fuzzer (AFL, libFuzzer, …)
• Interact with the kernel instead of calling into e.g. a userspace library
• Need to plug kernel coverage into the fuzzer

• Works fine for fuzzing blob-like inputs: filesystem images, netlink, etc.
• But other kernel inputs aren't blobs => Need custom generators/mutators
• SockPuppet: A Walkthrough of a Kernel Exploit for iOS 12.4 by Ned Williamson

– (Turning structure-aware fuzzing into API-aware with libprotobuf-mutator)

Reusing a userspace fuzzer

https://lwn.net/Articles/685182/
https://blog.cloudflare.com/a-gentle-introduction-to-linux-kernel-fuzzing/
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
http://libprotobuf-mutator

• See syzkaller talks for usage
• Good at fuzzing API-based interfaces out-of-the-box

Using syzkaller

• Tip #1: Don't just fuzz mainline with the default config
– Add new descriptions
– Tighten attack surface: fuzz a small number of related syscalls
– Fuzz distro kernels

https://github.com/google/syzkaller/blob/master/docs/talks.md

• Tip #2: Build your fuzzer on top of syzkaller
– Coverage-Guided USB Fuzzing with Syzkaller [slides] by Andrey Konovalov
– KVM: dev_kvm.txt, common_kvm_amd64.h, ifuzz

syzkaller is extensible

• Tip #3: Use syzkaller as a framework
– Only use crash parsing code
– Only use VM management code
– ...

https://www.youtube.com/watch?v=1MD5JV6LfxA
https://docs.google.com/presentation/d/1z-giB9kom17Lk21YEjmceiNUVYeI6yIaG5_gZ3vKC-M/edit?usp=sharing
https://github.com/google/syzkaller/blob/4c37c133e4bf703d023995535f1e264d8658e08e/sys/linux/dev_kvm.txt#L158
https://github.com/google/syzkaller/blob/4c37c133e4bf703d023995535f1e264d8658e08e/executor/common_kvm_amd64.h
https://github.com/google/syzkaller/tree/4c37c133e4bf703d023995535f1e264d8658e08e/pkg/ifuzz

• Might be beneficial for targeted fuzzing
• E.g. when the interface is not API-based

Writing a fuzzer from scratch

• For inspiration:
– Writing the world's worst Android fuzzer, and then improving it by Brandon Falk
– Fuzzing for eBPF JIT bugs in the Linux kernel by Simon Scannell
– Fuzzing the Linux kernel (x86) entry code by Vegard Nossum

https://gamozolabs.github.io/fuzzing/2018/10/18/terrible_android_fuzzer.html
https://scannell.me/fuzzing-for-ebpf-jit-bugs-in-the-linux-kernel/
https://blogs.oracle.com/linux/fuzzing-the-linux-kernel-x86-entry-code%2c-part-1-of-3

Fuzzing tips

• Understand the code you're fuzzing
– What kind of inputs it expects
– Which part you are trying to target

Read the code

• Write a fuzzer based on that
– Writing fuzzer based on specs/docs does not work well

• Check code coverage, make sure you cover the targeted layer

• Inject bugs (WARN_ON()/BUG_ON()) and check that fuzzer finds them

• Revert fixes for bugs/CVEs and check that fuzzer finds them

Is my fuzzer good?

• Fast fuzzer
– More execs/sec

• Smart fuzzer
– Better input generation
– Relevant guidance signal

Fast vs smart

• Focus on smart in the first place
– Formal investigation would be interesting; related paper and discussion

https://mboehme.github.io/paper/FSE20.EmpiricalLaw.pdf
https://twitter.com/andreyknvl/status/1263984766187175938

Collecting coverage
with KCOV

• A tool for collecting code coverage from the Linux kernel

• Available upstream, enabled with CONFIG_KCOV

• Based on compiler instrumentation => need to rebuild the kernel

KCOV overview

• Collects coverage from:

– User threads (i.e. kernel code that handles syscalls)

– Background thread and softirqs (with kernel code annotations)

• GCC/Clang pass that inserts a function call into every basic block

Instrumentation

__sanitizer_cov_trace_pc(); // 1
if (...) {

__sanitizer_cov_trace_pc(); // 2
 ...
}
__sanitizer_cov_trace_pc(); // 3

if (...) {
 ...
}

• Kernel DebugFS extension that exposes coverage per-thread

Userspace interface

int fd = open("/sys/kernel/debug/kcov", ...);

unsigned long *cover = mmap(NULL, ..., fd, 0);

ioctl(fd, KCOV_ENABLE, ...);

// Now, coverage from the current kernel thread is collected into cover.

// Each __sanitizer_cov_trace_pc() call saves its PC.

• KCOV collects coverage from the current user thread (by default)

– This is deliberate: ignoring irrelevant code executed in background

Relevant coverage

• Problem: an input might trigger relevant background code

– Syscall handler passing work to a global worker thread

– Opening a devices spawns a thread that handles it

• Solution: annotating relevant kernel code

Background coverage

void background_thread() {

kcov_remote_start(UNIQUE_ID); // Start collecting coverage associated with UNIQUE_ID.

...

kcov_remote_stop(); // Stop collecting coverage.

}

• But how to pass UNIQUE_ID from userspace?

• Global background threads

– Spawned from init code during boot

Global and local background threads

• Local background threads

– Spawned from syscall handlers

– Attached to a user-owned instance of a device

• No easy way to pass UNIQUE_ID from userspace

• Use predefined UNIQUE_ID

Global threads

Global threads
void hub_event() { // Handles USB devices, executed in global background thread, one thread per USB bus.

kcov_remote_start(kcov_remote_handle(KCOV_SUBSYSTEM_USB, bus_num)); // Start collecting coverage

... // into a dedicated buffer.

kcov_remote_stop(); // Copy collected coverage to the connected KCOV device.

}

int fd = open("/sys/kernel/debug/kcov", ...);

unsigned long *cover = mmap(NULL, ..., fd, 0);

ioctl(fd, KCOV_REMOTE_ENABLE, {..., handles = {kcov_remote_handle(KCOV_SUBSYSTEM_USB, bus_num)}, ...});

// Now, coverage from global background kernel thread is collected into cover.

• Can pass UNIQUE_ID from userspace

Local threads

Local threads
long vhost_dev_set_owner(struct vhost_dev *dev) { // Called when opening /dev/vhost.

dev->kcov_handle = kcov_common_handle(); // current->kcov_handle

worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);

}

int fd = open("/sys/kernel/debug/kcov", ...);

unsigned long *cover = mmap(NULL, ..., fd, 0);

ioctl(fd, KCOV_REMOTE_ENABLE, {..., common_handle = getpid(), ...}); // current->kcov_handle = PID

// Now, coverage from local background kernel threads is collected into cover.

Local threads
long vhost_dev_set_owner(struct vhost_dev *dev) { // Called when opening /dev/vhost.

dev->kcov_handle = kcov_common_handle();

worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);

}

static int vhost_worker(struct vhost_dev *dev) {

kcov_remote_start_common(dev->kcov_handle);

work->fn(work);

kcov_remote_stop();

}

• When fuzzing from multiple processes in one VM

• Global threads

– Need a dedicated thread per each fuzzing process

– USB: each fuzzing process gets its own USB bus

• Local threads

– Just use a unique common_handle for each process (process number)

Multiprocess fuzzing

Final notes

• Developing fuzzers is engineering

– You have to be good at writing code (besides reading it for review)

Note #1

• Good fuzzers find too many bugs

– Not all of them dangerous (fuzzing became the new static analysis :)

– And not all of them get fixed :(

Note #2

• Distilling the bugs that matter?

– Automatically detecting bugs that are exploitable?

• Articles/papers:
– github.com/xairy/linux-kernel-exploitation#vulnerability-discovery
– wcventure.github.io/FuzzingPaper/#kernel-fuzzing
– syzkaller docs: research ; syzkaller docs: talks

• People to follow
– @dvyukov, @gamozolabs, whoever else's work was linked in this talk

• Telegram channel with links on Linux kernel security: t.me/linkersec

Linux kernel fuzzing materials

https://github.com/xairy/linux-kernel-exploitation#vulnerability-discovery
https://wcventure.github.io/FuzzingPaper/#kernel-fuzzing
https://github.com/google/syzkaller/blob/master/docs/research.md
https://github.com/google/syzkaller/blob/master/docs/talks.md
http://twitter.com/dvyukov
https://twitter.com/gamozolabs
http://t.me/linkersec

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

