

Writing Linux Kernel
Modules In Rust

Wedson Almeida Filho, SW Engineer, Google

Agenda

Getting ready
Background information
Writing the module
Conclusion

Getting ready

Boot VM
Log in as guest (password is also guest)

Getting ready (cont'd)
Make vim the git editor

git config --global core.editor vim

Fetch latest version, configure and build it
cd linux
git fetch --depth=1 origin
git checkout origin/rust
rustup override set $(scripts/min-tool-version.sh rustc)
rustup component add rust-src
make allnoconfig qemu-busybox-min.config rust.config
make

Background

Rust for Linux

Source code available at https://github.com/rust-for-linux/linux

Goal: make Rust a first-class language for Linux kernel development

https://github.com/rust-for-linux/linux

Rust for Linux (cont'd)

Why?
Memory safety

Reduce the number of memory vulnerabilities in new code
Productivity

Rich type system catches more errors at compile time
Performance comparable to C

User vs kernel space

Process 1 Process 2 … Process n

kernel

hardware/hypervisor

file system network … scheduler

The life of a kernel module
Boot/load Module Subsystem Actor

init register

actioncallback

Unload

unregister

exit

What we are going to build
Process 1

cat > /dev/scull0

Process 2
cat /dev/scull0

kernel

/dev/scull0 /dev/scull1 … /dev/sculln

open write close

data

open read close

Development workflow

Links to image sources: qemu, busybox, linux kernel, gdb, neovim

https://wiki.qemu.org/File:Qemu-logo.png
https://busybox.net/images/busybox1.png
https://en.wikipedia.org/wiki/Linux_kernel#/media/File:Tux.svg
https://en.wikipedia.org/wiki/GNU_Debugger#/media/File:GDB_Archer_Fish_by_Andreas_Arnez.svg
https://upload.wikimedia.org/wikipedia/commons/3/3a/Neovim-mark.svg

Kernel configuration

The kernel has hundreds of configuration options
To minimise build and boot times, we only enable the necessary ones:

allnoconfig qemu-busybox-min.config rust.config
We'll add a new one for our module

More on the setup

tmux is a terminal multiplexer
Sessions run on the background, can be reattached later
Prefix key is C-q (different from the default C-b)

neovim is a vim clone
With LSP support
rust-analyzer is a Rust LSP

https://github.com/tmux/tmux/wiki
https://neovim.io/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://github.com/rust-lang/rust-analyzer

Writing the module

Step 1: Add config and empty file

Modify Kconfig and Makefile
make menuconfig
touch samples/rust/rust_scull.rs

The kernel builds (with a new warning)
Very similar to C

Step 2: Module declaration and init

Add minimal code to samples/rust/rust_scull.rs

Fixes warning
No visible changes yet

Step 3: Hello world!

Add a print message to module init

Message visible when kernel boots

Step 4: Add minimal file operations implementation

Add open function that prints a message

No noticeable change in behaviour

Step 5: Register a misc device

Add registration to module init

Device now reachable via /dev/scull
Also appears in /proc/misc
Reading and writing to it fails

Step 6: Add minimal read implementation

Add read that prints a message to kernel log

Now cat /dev/misc doesn't fail anymore
Write still fails: echo test > /dev/scull

Step 7: Add minimal write implementation

Add write that prints a message to kernel log

Now echo test > /dev/scull doesn't fail anymore

Step 8: Add device state

When opening a file, it logs the device number

Different instances of the device may hold different state
Currently we only have one instance though

Step 9: Add file state

Update open to store device pointer

There is no way to forget to increment refcount
Now reading/writing also prints the device number

Step 10: Save data written

Update write implementation

It doesn't compile. Why?
We can't use copied data after assigning. Why?

Step 11: Add mutual exclusion

Update state type and write implementation

Now written data is stored in device
No data races

Step 12: Return saved data on read

Update read implementation

Now previously written data is read back
What happens if more data is written?

Step 13: Improved buffering of data

Update open to clear the buffer if opened for write
Update write to use the offset

cat > /dev/scull now stores all lines

Step 14: Add module parameters

Update module definition to include parameter

Parameters can now be specified at boot, e.g., scull.nr_devs=10

Step 15: Creating the number of specified devices

Update module init

Several independent devices now: /dev/scull0, /dev/scull1, etc.

Step 16: Compiling as a separate module

Enable CONFIG_MODULES and CONFIG_MODULE_UNLOAD
Switch CONFIG_RUST_SCULL to m
Rebuild image: find . | cpio -o -H newc | gzip >
../../linux/initrd.img

insmod/rmmod to insert and remove module
Parameter can also be specified at insertion time

Conclusion

What we have done
We have written a kernel module

Can be compiled into the kernel or as separate module
Takes the number of device instances as an argument
Registers with the miscdev subsystem
Implements file operations

Code available here: https://github.com/wedsonaf/linux/commits/lf-session

Coming up

Sessions on
Setting up an environment
Writing Rust async code in the kernel

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

