How to report and handle Linux kernel regressions

Thorsten Leemhuis
regressions shall be fixed
intro;
"no regressions"
"no regressions"
aka "we don't break user-space"
even important fixes are reverted, if it turns out they cause regressions
looks like quite a few reported regressions are never addressed :-(/
some, because
the report was bad
some, because it was a bug and not a regression
some, because nobody located the the change causing it
intro;
some, because developers didn't handle things appropriately
I'll show you how to get your regression fixed as non-developer
I'll show you how to handle regressions appropriately as developer
[1. what exactly is a regression]
definition;

regression == a kernel update breaks something
It’s a regression if something running fine with one Linux kernel
It’s a regression if something running fine with one Linux kernel works worse or not at all with a newer version.
It’s a regression if something running fine with one Linux kernel works worse or not at all with a newer version that's compiled using a similar configuration.
definition;
say your distro updated from v6.1.y to v6.2.y
definition;
say your distro updated from v6.1.y to v6.2.y and your beloved software from 20 years ago then stops working
definition;

yes, that's a regression
definition;

yes, that's a regression, as long as it's not caused by an optional new feature
yes, that's a regression, as long as it's not caused by an **optional** new feature
definition; allows progress
definition;

allows introducing new features like security hardening techniques, even if they break ancient apps
you have to explicitly enable such features
definition;

you have to explicitly enable such features at runtime
definition;
you have to explicitly enable such features at runtime or build-time
definition;
luckily, new features known to cause regression are few
a deliberate config change by your distro might have broken your beloved app from 20 years ago
definition;

recheck with a self build kernel
definition;

recheck with self build kernels
2. someone must locate which change causes the problem
trailing;

say you pay someone to upgrade your laptop
say you pay someone to upgrade your laptop and then something unrelated is broken
the person or company you payed has to fix things
the developer who caused a regression needs to fix it
the developer who caused a regression needs to fix it (or its superior)
just report your regression
just report your regression –
maybe somebody knows
what's causing it
because the root cause is already known
because the root cause is already known or because someone can point in the direction of a likely culprit
this often works :-D
trailing;

and often it does not :-/
and often it does not :-(
– somebody else then then has to locate the culprit
trailing;
in the end you get what you paid for
in the end you get what you payed for: nothing
that's why it's your job as reporter to find the culprit
trailing;

that's why it's your job as reporter to find the culprit – which often is needed anyway
culprit can often be found by compiling ~15 kernels
trailing;
trailing;
trailing;
trailing;
trailing;
trailing;
trailing;
trailing;
once culprit is known, it's clear who's responsible:
once culprit is known, it's clear who's responsible:
author
trailing;

once culprit is known, it's clear who's responsible: author or committer
once culprit is known, it's often possible to resolve things quickly
trailing;

once culprit is known, it's often possible to resolve things quickly: fix
once culprit is known, it's often possible to resolve things quickly: fix or revert
perform a bisection!
perform a bisection!

give you the lever to get
most regressions quickly fixed
[3. report the problem appropriately]
improperly reported regressions might not be fixed
Documentation/admin-guide/reporting-issues.rst is your guide
Step-by-step guide how to report issues to the kernel maintainers

The above TL;DR outlines roughly how to report issues to the Linux kernel developers. It might be all that’s needed for people already familiar with reporting issues to Free/Libre & Open Source Software (FLOSS) projects. For everyone else there is this section. It is more detailed and uses a step-by-step approach. It still tries to be brief for readability and leaves out a lot of details; those are described below the step-by-step guide in a reference section, which explains each of the steps in more detail.

Note: this section covers a few more aspects than the TL;DR and does things in a slightly different order. That’s in your interest, to make sure you notice early if an issue that looks like a Linux kernel problem is actually caused by something else. These steps thus help to ensure the time you invest in this process won’t feel wasted in the end:

- Are you facing an issue with a Linux kernel a hardware or software vendor provided? Then in almost all cases you are better off to stop reading this document and reporting the issue to your vendor instead, unless you are willing to install the latest Linux version yourself. Be aware the latter will often be needed anyway to hunt down and fix issues.
- Perform a rough search for existing reports with your favorite internet search engine; additionally, check the archives of the Linux Kernel Mailing List (LKML). If you find matching reports, join the discussion instead of sending a new one.
- See if the issue you are dealing with qualifies as regression, security issue, or a really severe problem: those are ‘issues of high priority’ that need special handling in some steps that are about to follow.
- Make sure it’s not the kernel’s surroundings that are causing the issue you face.
- Create a fresh backup and put system repair and restore tools at hand.
- Ensure your system does not enhance its kernels by building additional kernel modules on-the-fly, which solutions like DKMS might be doing locally without your knowledge.
- Check if your kernel was ‘tainted’ when the issue occurred, as the event that made the kernel set this flag might be causing the issue you face.
- Write down coarsely how to reproduce the issue. If you deal with multiple issues at once, create separate notes for each of...
Make Linux Developers Fix Your Kernel Bug

Wednesday, December 7 | 7:00 AM – 8:30 AM PST

Mentor: Thorsten Leemhuis
Linux Kernel Regression Tracker

LF LIVE MENTORSHIP SERIES

Make Linux Developers Fix Your Kernel Bug

Recorded December 7, 2022 | 07:00 AM

https://www.linuxfoundation.org/webinars/make-linux-developers-fix-your-kernel-bug
1. ensure your kernel is vanilla
reporting;

to ensure both working and broken kernels are vanilla.
as "working" or "broken" might be due to distro modifications
2. base your report on a fresh kernel
3. ensure your kernel's and system's integrity.
4. submit your report to the right place
5. depict the problem adequately
Hi! Since updating from 5.19.5 to latest mainline (6.0-rc4, vanilla, untainted) my Laptop (Lenovo T14s AMD Gen2 with Fedora 36) my systems doesn't show any WiFi devices anymore. I noticed these error msgs in dmesg:

```
[ 2.065312] iwlwifi 0000:00:14.3: enabling device (0000 -> 0002)
[ 2.199881] iwlwifi: probe of 0000:00:14.3 failed with error -110
```

Does anyone have an idea what might be wrong here? Or is somebody maybe even working on a fix already? If not I'd be willing to perform a bisection to get down to the root of the problem.

Dmesg: https://example.org/myfiles/dmesg.txt
Kernel-Config: https://example.org/myfiles/config.txt [based on Fedora's]

Ciao, Thorsten
Hi! Since updating from 5.19.5 to latest mainline (6.0-rc4, vanilla, untainted) my Laptop (Lenovo T14s AMD Gen2 with Fedora 36) my systems doesn't show any WiFi devices anymore. I noticed these error msgs in dmesg:

```
[ 2.065312] iwlwifi 0000:00:14.3: enabling device (0000 -> 0002)
[ 2.199881] iwlwifi: probe of 0000:00:14.3 failed with error -110
```

Does anyone have an idea what might be wrong here? Or is somebody maybe even working on a fix already? If not I'd be willing to perform a bisection to get down to the root of the problem.

Dmesg: https://example.org/myfiles/dmesg.txt
Kernel-Config: https://example.org/myfiles/config.txt [based on Fedora's]

Ciao, Thorsten
Hi! Since updating from 5.19.5 to latest mainline (6.0-rc4, vanilla, untainted) my Laptop (Lenovo T14s AMD Gen2 with Fedora 36) my systems doesn't show any WiFi devices anymore. I noticed these error msgs in dmesg:

```
[ 2.065312] iwlwifi 0000:00:14.3: enabling device (0000 -> 0002)
[ 2.199881] iwlwifi: probe of 0000:00:14.3 failed with error -110
```

Does anyone have an idea what might be wrong here? Or is somebody maybe even working on a fix already? If not I'd be willing to perform a bisection to get down to the root of the problem.

Dmesg: https://example.org/myfiles/dmesg.txt
Kernel-Config: https://example.org/myfiles/config.txt [based on Fedora's]

Ciao, Thorsten
Hi! Since updating from 5.19.5 to latest mainline (6.0-rc4, vanilla, untainted) my Laptop (Lenovo T14s AMD Gen2 with Fedora 36) my systems doesn't show any WiFi devices anymore. I noticed these error msgs in dmesg:

```
[ 2.065312] iwlwifi 0000:00:14.3: enabling device (0000 -> 0002)
[ 2.199881] iwlwifi: probe of 0000:00:14.3 failed with error -110
```

Does anyone have an idea what might be wrong here? Or is somebody maybe even working on a fix already? If not I'd be willing to perform a bisection to get down to the root of the problem.

Dmesg: https://example.org/myfiles/dmesg.txt
Kernel-Config: https://example.org/myfiles/config.txt [based on Fedora's]

Ciao, Thorsten
Documentation/admin-guide/reporting-issues.rst covers everything crucial for regressions
Documentation/admin-guide/reporting-regressions.rst holds additional details
Reporting regressions

“We don’t cause regressions” is the first rule of Linux kernel development; Linux founder and lead developer Linus Torvalds established it himself and ensures it’s obeyed.

This document describes what the rule means for users and how the Linux kernel’s development model ensures to address all reported regressions; aspects relevant for kernel developers are left to Handling regressions.

The important bits (aka “TL;DR”)

1. It’s a regression if something running fine with one Linux kernel works worse or not at all with a newer version. Note, the newer kernel has to be compiled using a similar configuration; the detailed explanations below describes this and other fine print in more detail.

2. Report your issue as outlined in Reporting issues, it already covers all aspects important for regressions and repeated below for convenience. Two of them are important: start your report's subject with “[REGRESSION]” and CC or forward it to the regression mailing list.
1. start your report’s subject with "[REGRESSION]"
2. CC or forward it to the regression mailing list

<regressions@lists.linux.dev>
reporting;

[optional]

3. include a paragraph like this:

#regzbot introduced v5.13..v5.14-rc1
Is it a regression, if the issue can be avoided by updating some software?

Almost always: yes. If a developer tells you otherwise, ask the regression tracker for advice as outlined above.

Is it a regression, if a newer kernel works slower or consumes more energy?

Yes, but the difference has to be significant. A five percent slow-down in a micro-benchmark thus is unlikely to qualify as regression, unless it also influences the results of a broad benchmark by more than one percent. If in doubt, ask for advice.

Is it a regression, if an external kernel module breaks when updating Linux?

No, as the “no regression” rule is about interfaces and services the Linux kernel provides to the userland. It thus does not cover building or running externally developed kernel modules, as they run in kernel-space and hook into the kernel using internal interfaces occasionally changed.
Is it a regression, if a newer kernel works slower or consumes more energy?
reporting;

Is it a regression, if an external kernel module breaks when updating Linux?
Is it a regression, if some test scripts find a API or ABI change?
Does the "no regression" rule apply if I seem to be the only person affected?
Does the "no regression" rule apply for code in the staging tree as well?
What happens if fixing a regression is impossible without causing another?
Is it a regression, if some feature I relied on was removed months ago?
reporting;

reporting-issues.rst is informative for developers, too
reporting; reporting-issues.rst is informative for developers, too; but there is a dedicated doc for them as well
Documentation/process/handling-regressions.rst
Handling regressions

We don’t cause regressions – this document describes what this “first rule of Linux kernel development” means in practice for developers. It complements *Reporting regressions*, which covers the topic from a user’s point of view; if you never read that text, go and at least skim over it before continuing here.

The important bits (aka “The TL;DR”)

1. Ensure subscribers of the [regression mailing list](https://lists.linux.dev/ archives) (regressions@lists.linux.dev) quickly become aware of any new regression report:

 - When receiving a mailed report that did not CC the list, bring it into the loop by immediately sending at least a brief “Reply-all” with the list CCed.
 - Forward or bounce any reports submitted in bug trackers to the list.

2. Make the Linux kernel regression tracking bot “regzbot” track the issue (this is optional, but recommended):
1. CC regressions list
reporting;

[optional]

2. tell regzbot
3. when fixing, point to the report using a Link: tag
3. when fixing, point to the report using a Link: tag
e.g. like this:

Reported-by: Some Human <shuman@example.com>
Link: https://lore.kernel.org/r/123-msgid-456@example.com/
4. fix regressions quickly
reporting;

fixes for most bisected regressions should be mainlined within 2 weeks
many regressions should be mainlined within one week
quite a few should be mainlined within two or three days
yes, those are ambitious targets
yes, those are ambitious targets, but there are reasons for them
reporting;

see Documentation/process/handling-regressions.rst
that document also contains many other insightful things
quotes from Linus on handling regression
reporting;

quotes from Linus on handling regression – lots of them
also describes how to deal with changes where a regression risk is known
or if regzbot should be involved for each and every regression
reporting;

and how to interact with regzbot
[4. regression tracking]
tracking; helps Linus et al doing a better job
Hi Linus. Below you'll find regzbot's report about regression from this cycle me or someone else told the bot about.

Let me highlight three issues you might want to know about:

* There is a long and ongoing discussion about problems with the NFS client where there is some disagreement if this qualifies as regression, as it's an old problem that is more likely to happen now. Not sure where this heads, a proper fix seems unlikely to emerge quickly. At least it currently looks like this doesn't affect a lot of users.
ensures the "no regression" rule is no hollow promise
Linux kernel regression status

[next] [mainline] [stable/longterm] • [new] • [all] • [resolved] [inconclusive]

current cycle (v6.2.. aka v6.3-rc), culprit identified

- 02852c01f654
 (v6.3-rc1)
 - Build error in drivers/media/i2c/imx290.c if PM support is disabled by Guenter Roeck
 Earliest & latest activity: 6 days ago.

- 1ec49744ba83
 (v6.3-rc1)
 - Build failures for sparc64:allmodconfig and parisc:allmodconfig with gcc 11.x+ by Guenter Roeck
 Earliest & latest activity: 12 & 9 days ago. Noteworthy: [patch].

current cycle (v6.2.. aka v6.3-rc), unknown culprit

none known by regzbot

previous cycle (v6.1..v6.2), culprit identified, with activity in the past three months

- 4444bc2116ae
 (v6.2-rc5)
 - net: wireless: rt2800usb: wifi performance issues and connection drops by Thomas Mann and Thomas Mann
 Earliest & latest activity: 2 & 0 days ago. Noteworthy: [patch].

- c408b3d1d9bb
 (v6.2-rc5)
 - thermal: cached max_state breaks ACPI processor cooling device by Zhang, Rui
 Earliest & latest activity: 9 & 2 days ago. Noteworthy: [1], [2], [3], [4], [patch (SOB)].

- 63a7cb130718
 (v6.2-rc5)
 - btrfs: DISCARD storm towards NVME device be it idle or not by Sergei Trofimovich
 Earliest & latest activity: 4 & 3 days ago.
classic bug trackers don't fit well into the Linux kernel's mail based development workflow
regzbot in the ideal case just requires *one* additional task
tracking;

when reporting a regression, add this para to the mailed report:

#regzbot introduced v6.2..v6.3-rc1
when reporting a regression, add this para to the mailed report:

#regzbot introduced 1f2e3d4c5b6b
tracking;

regzbot then watches out for replies
regzbot then looks out for patches posted to fix tracked regressions
tracking;

regzbot considers regression resolved once fix lands
connection made through Link: tags pointing to the report
tracking;

connection made through Link: tags pointing to the report
[that's why they are important!]
to specify a fix manually, reply to report with a paragraph like this:

#regzbot fix 1f2e3d4c5b6a
to make regzbot track someone else's report, reply with a para like:

#regzbot ^introduced v6.2..v6.3-rc1
Get started with regzbot

- Get started with regzbot
 - Why and how to make regzbot track a Linux kernel regression
 - How to let regzbot you are fixing a Linux kernel regression it tracks
 - More regzbot features relevant for both reporters and developers
 - Important basics: How to interact with regzbot
 - Make regzbot track an existing report
 - Update properties of a tracked regression
 - change the range or commit that introduced the regression
 - Update the report’s title
 - Point regzbot to other places with further details about a regression
 - Link and monitor a related discussion
 - Point to a place with further details, like a bug-tracker
 - Resolve a regression
 - Mark a regression as fixed
 - Duplicates
 - Mark a regression as resolved
 - Mark a regression as inconclusive

Why and how to make regzbot track a Linux kernel regression

When reporting a Linux kernel regression it is in your interest to make regzbot aware of the issue, as that ensures the report won’t accidentally fall though the cracks; it also makes sure leading developers see the issue via the tracked regression website [or the weekly reports, which are not sent yet, but soon will be].

To get these benefits there is just one thing you need to do when reporting the regression by mail: include a line starting with `#regzbot,introduced,foo`, where
Reference documentation for regzbot, the Linux kernel regression tracking bot

- Reference documentation for regzbot, the Linux kernel regression tracking bot
 - Basic concept
 - What regzbot does once it's aware of a regression
 - What regzbot does with the gathered data
 - Interacting with regzbot
 - Commands to be sent as a reply to the report
 - commands to make regzbot track a regression
 - commands to update properties of a tracked regression
 - commands to point to related discussion, reports and webpages
 - commands to resolve a regzbot entry
 - commands users and developers normally shouldn’t use
 - Commands regzbot accepts everywhere it looks
 - backlinks
 - tag users and developers normally shouldn’t use

Note: this document explains regzbot concept and all options; if you want something easier and quicker to consume, head over to 'getting started with regzbot'

Basic concept

Regzbot is a bot watching mailing lists and Git trees to track Linux kernel regression from report to elimination. to ensure none fail though the cracks unnoticed. It tries to impose as little overhead as possible on reporters and developers, but needs two things to do everything automatically:

- someone needs to tell regzbot when a mail contains a regression report
- the fix and other related discussions need to link to the mail with the report

https://gitlab.com/knurd42/regzbot/-/blob/main/docs/reference.md
The regzbot project started with funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871528.
https://linux-regtracking.leemhuis.info/about/
thx for sponsoring my current efforts:
I keep an eye on things with regzbot
I keep an eye on things with regzbot — far from perfect, but a lot better than nothing!
is regression tracking worth it?
tracking;

• Linus seems to like it
Linus seems to like it
many others said it's great that I do it

tracking;
• Linus seems to like it
• many others said it's great that I do it
• helped getting quite few fixes in on the last minute
tracking;

• Linus seems to like it

• many others said it's great that I do it

• helped getting quite few fixes in on the last minute

• regularly brings unfixed regressions back to developers attention
I'd say regression tracking is definitely worth it.
I'd say regression tracking is definitely worth it

[but I'm obviously biased]
I'd say regression tracking is definitely worth it
[and there is always something to improve]
[finally()]
finally()

regressions shall be fixed
my regression tracking tries to ensure that really happens
finally()

hence let the regressions list know about regressions!
finally()

hence let the regressions list
know about regressions!
[and ideally regzbot, too]
finally()

contact me if you need help or advice with anything wrt to regressions
finally()

developers,

take regression report seriously
handling-regressions.rst is your guide
if you break something, you need to fix it
finally()

users,
this gives you a pretty long lever
users,
this gives you a pretty long lever
[but better ensure you use it properly]
finally()

reporting-regressions.rst
is your guide
finally()

bisected the regression
bisected the regression with vanilla kernels
finally()

bisected the regression with vanilla kernels using a similar configuration
finally()

in initial report, is totally fine to just offer bisecting!
finally()

remember: there is no "us versus them" here
finally()

no "users" vs. "developers"
finally()

we are in this together!
Thorsten Leemhuis

mail: linux@leemhuis.info
GPG Key: 0x72B6E6EF4C583D2D
#fediverse: @kernellogger@fosstodon.org (en),
 @knurd42@social.linux.pizza (en)

#EOF