
1© 2023 Cisco and/or its affiliates. All rights reserved.

Testing the Media Subsystem: 
Compliance Tests and Virtual Drivers
Hans Verkuil
Cisco Systems Norway
hverkuil@xs4all.nl



© 2023 Cisco and/or its affiliates. All rights reserved. 2

History, Features & 
Architecture



© 2023 Cisco and/or its affiliates. All rights reserved. 3

  

History
● First drivers appeared in 1996: bttv and bw-qcam.
● V4L1 API appeared around 1999.
● V4L2 API appeared around 2002.
● V4L1 API was removed end 2010/beginning 2011.
● Support for complex video pipelines was finalized end of 2012.
● Close relationship with DVB and IR. V4L2 + DVB + IR are all part of drivers/media.
● The media HDMI CEC subsystem was added in 2016.



© 2023 Cisco and/or its affiliates. All rights reserved. 4

  

Features of V4L2
● Video capture/output and tuning (/dev/videoX, streaming and control)
● Raw and Sliced VBI capture and output (/dev/vbiX, streaming and control)

● Memory-to-Memory (aka codec) devices (/dev/videoX, streaming and control)
● Radio tuning and modulating (/dev/radioX, control, ALSA for streaming)

● Software Defined Radio tuning and modulating (/dev/swradioX, control, ALSA for streaming)

● RDS receiver/transmitter (/dev/radioX, streaming and control)
● Device topology discovery/control (/dev/mediaX, control)
● Low-level sub-device control (/dev/v4l-subdevX, control)
● Touch devices (/dev/v4l-touchX, streaming and control)



© 2023 Cisco and/or its affiliates. All rights reserved. 5

  

Video HW Architecture
● Constellation of devices:

– DMA engine
– Sensor
– Video receiver
– Video transmitter
– Tuner
– Demodulators
– IR receivers/transmitters
– Muxers
– Audio amplifiers
– Audio mixers

– De-ghosting
– Comb filters
– Scalers
– Image processors

– Camera flash
– RDS encoders/decoders
– Modulators
– Codecs



© 2023 Cisco and/or its affiliates. All rights reserved. 6

  

Driver architecture
● The bridge driver controls the platform/USB/PCI/... hardware that is responsible for the DMA 

transfers.
● Based on the board configuration (USB ID, PCI ID, kernel config, device tree, module options) 

the necessary sub-device drivers are loaded.
● The bridge driver finally registers the device nodes it needs.



© 2023 Cisco and/or its affiliates. All rights reserved. 7

  

Lots of IOCTLs
● V4L2 API (videodev2.h): 82 ioctls
● V4L2 subdevice API (v4l2-subdev.h): 25
● Media Controller API (media.h): 8



© 2023 Cisco and/or its affiliates. All rights reserved. 8

  

IOCTLs per Category
● V4L2 Core (capabilities, controls, events, debug): 20
● Input (enumerating, selecting): 6
● Output (enumerating, selecting): 6

● Tuning/Modulating: 8

● Analog TV: 8

● Digital Video (HDMI/DisplayPort/etc): 14

● Format + Cropping/Composing: 24

● Streaming: 9

● Codecs: 7

● Routing: 6

● Miscellaneous: 11



Cisco Confidential 9© 2023 Cisco and/or its affiliates. All rights reserved.

How To Test?



© 2023 Cisco and/or its affiliates. All rights reserved. 10

  

Problems
● A vast variety of hardware with wildly different feature sets, often (very) difficult to obtain.
● A large API to test, you would need a lot of hardware to be able to cover all those features.
● Media subsystem maintainer: how to check for regressions in the media core frameworks?
● Driver developer: how to test my driver and how to check if my driver is implementing the API 

correctly?

● Application developer: how to test if my application can handle all the different types of 
hardware?

● In some cases: how to test that a remote device connected to our device is compliant? (HDMI 
CEC)



© 2023 Cisco and/or its affiliates. All rights reserved. 11

  

Solutions
● Create a compliance test utility that driver developers can run against their driver to verify 

compliance. When submitting a new driver (or making major driver changes) the compliance 
output has to be included in the cover letter.

● Not perfect, but helps enormously when doing code review (it catches all the silly corner cases), 
and gives a lot more confidence in the driver.

● Testing core framework changes is pretty much impossible with real hardware, instead we 
created virtual drivers (drivers emulating hardware). These drivers create devices with the widest 
possible feature set.

● Core framework changes can be tested against those drivers using the compliance tests: these 
should still pass.

● Application developers can test against those drivers, no need to buy a lot of hardware for 
testing.

● Emulating hardware allows for error injection to test corner cases.



© 2023 Cisco and/or its affiliates. All rights reserved. 12

  

v4l2-compliance
● Started 15 years ago, all it tested where a handful of core ioctls.
● It took 6 years to finally get the tests for streaming in, and another year to test formats and 

crop/compose combinations.
● New drivers must pass the compliance tests.
● Close to 1000 tests are performed.
● Tests for new APIs must also be added to the compliance test. Great way to verify if proposed API 

is sane.
● It is more strict than the V4L2 specification: it assumes drivers use the correct core frameworks 

which means that there is no excuse to e.g. support VIDIOC_S_CTRL but not 
VIDIOC_S_EXT_CTRLS.

● Always compile from the v4l-utils git repository to get the latest tests.
● Tests are simple: fail_on_test(controls != num_regular_ctrls);

fail: v4l2-test-controls.cpp(356): controls != num_regular_ctrls



© 2023 Cisco and/or its affiliates. All rights reserved. 13

  

Test Drivers
● vivid: video capture & output, vbi capture & output, radio receiver & transmitter, software defined 

radio capture, metadata capture & output, touch capture, HDMI CEC emulation. Closely 
emulates what 'real' hardware will do. Emulates a webcam, analog SDTV video, SDTV TV tuner 
and HDMI digital video capture.

● vim2m: memory-to-memory video scaler test driver.

● vicodec: memory-to-memory video codec test driver.

● vimc: Camera ISP-like test driver.

● visl: test driver to test stateless codec APIs.

● Most V4L2 devices only support a (very) limited subset of the V4L2 API. Without test drivers (or 
a huge collection of hardware) it is impossible to test your application, but with these drivers you 
can.



Cisco Confidential 14© 2023 Cisco and/or its affiliates. All rights reserved.

Demo!



Cisco Confidential 15© 2023 Cisco and/or its affiliates. All rights reserved.

HDMI CEC:
Consumer Electronics Control



© 2014 Cisco and/or its affiliates. All rights reserved. 16

  

CEC @ 1 meter: 400 bits/s



© 2023 Cisco and/or its affiliates. All rights reserved. 17

  

Testing CEC
● cec-compliance: can test your device, but also a remote device whether it follows the CEC 

protocol.
● The vivid test driver can emulate CEC, useful for regression tests and application testing.
● The cec-gpio driver can drive the CEC pin when connected to a GPIO. This drives the pin 

directly and allows low-level error injections to test all sorts of error conditions or rare situations 
(e.g. Arbitration Lost).



Cisco Confidential 18© 2023 Cisco and/or its affiliates. All rights reserved.

Demo!



Cisco Confidential 19© 2023 Cisco and/or its affiliates. All rights reserved.

Resources



© 2023 Cisco and/or its affiliates. All rights reserved. 20

  

Resources
● Linux Media Infrastructure API: http://linuxtv.org/docs.php.
● Media subsystem repository: https://git.linuxtv.org/media_tree.git
● v4l-utils git repository: http://git.linuxtv.org/v4l-utils.git
● linux-media mailinglist & irc channel: http://linuxtv.org/lists.php

http://linuxtv.org/docs.php
https://git.linuxtv.org/media_tree.git
http://git.linuxtv.org/v4l-utils.git
http://linuxtv.org/lists.php


Cisco Confidential 21© 2023 Cisco and/or its affiliates. All rights reserved.

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

