

Debugging Linux Memory
Management Subsystem

Khalid Aziz
Consulting Linux Kernel Engineer

Oracle

● Look at a real customer problem
● Parts of mm that play a part in the problem
● Where is the problem
● How to solve it
● Tools available for mm and general kernel debugging

Agenda

● When something does not work right, how do you determine where the problem is.
● First understand where to look by doing a failure analysis. Analysis helps determine the potential

code paths in the failure.
● Add dynamic observability to the suspect code path: instrument the code (printk?), kernel

debugger, trace points, add counters for events, use existing stats reported by kernel
● The big question is can the failure be reproduced on a test system? If not, what level of access do

you have to the failing system?
● Access to customer systems tends to be extremely limited. If failure can not be reproduced on a

test system, dynamic observability may not be an option.
● With lack of reproducible failure and no access to failing system, investigation depends upon being

able to get static information from the failing system

A Developer’s Investigative Toolbox

● Oracle X8-2 server, 96 cores, 256GB memory, Oracle enterprise
kernel 5.4.17-2136.314.6

● System is kexec rebooted periodically
● After 90-100 kexec reboots, system fails to boot up with “Out of

memory” messages.
● A system with 256GB memory that has booted up 100s of times

successfully failing to boot because it ran out of memory is very odd

Customer Problem

● Stack trace on console looks like:
Out of memory: Killed process 1829 (dbus-daemon) total-vm:76664kB, anon-rss:0kB, file-rss:0kB, shmem-rss:0kB,
UID:81 pgtables:156kB oom_score_adj:-900
Kernel panic - not syncing: System is deadlocked on memory
CPU: 7 PID: 2066 Comm: kworker/u193:6 Tainted: G OE 5.4.17-2136.314.6.el8uek.x86_64 #2
Hardware name: Oracle Corporation ORACLE SERVER X8-2/ASM,MB,X8-2, BIOS 51050300 07/01/2021
Call Trace:
 dump_stack+0x6d/0x8f
 panic+0x101/0x2f9
 out_of_memory.cold.38+0x5e/0x7e
 __alloc_pages_slowpath+0xd94/0xe78
 __alloc_pages_nodemask+0x2e3/0x32a
 alloc_pages_current+0x85/0xe2
 __get_free_pages+0x11/0x3a
 pgd_alloc+0x3a/0x233
 mm_init+0x1ab/0x295
 mm_alloc+0x4e/0x5a
………..snip………..

Stack Trace

● Kernel panics early on soon after root filesystem is mounted and systemd has been started. No
login prompt yet.

● Without a login prompt and limited access to a customer system, console log is the only
reasonable option to aid debugging.

● Command line in console log does not show any incorrect options that could cause this issue -
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.4.17-2136.314.6.el8uek.x86_64 root=/dev/mapper/vg_lab77-lv_root ro
console=ttyS0,115200 crashkernel=256M@64M resume=/dev/mapper/vg_lab77-lv_swap
rd.lvm.lv=vg_lab77/lv_root rd.lvm.lv=vg_lab77/lv_swap biosdevname=1 net.ifnames=1
console=ttyS0,115200n8 pci=noaer pciehp.pciehp_surprise=1

● Console log shows “total RAM covered: 262080M” which verifies all 256GB of memory was discovered
by the kernel

Digging through console log

● What are possible points of failure that could cause out of memory condition:

● Failure in physical memory modules

● Kernel failed to detect all physical memory

● Kernel fails to add all physical memory to its memory map
● Cold reboot restores system to working state and all 256GB of memory becomes available. That

rules out physical memory module failure
● When kernel panics with out of memory condition, it still reports having discovered 256 GB of

memory. That verifies kernel does detect all of memory

Memory information in console log

● Kernel maintains a list of all memory ranges available. As it discovers physical memory ranges, it
adds them to its list of memory it is managing.

● Physical memory is managed in units of pages. Page size is dependent upon processor.
architecture. Some processors can support multiple page sizes. In this specific case, we are
working with x86-64 processor which has a base page size of 4K.

● Looking through the console log, we find the message “last_pfn = 0x70000 max_arch_pfn =
0x400000000”. PFN stands for Physical Frame Number. Physical memory is divided into page frames.
Depending upon how much of physical memory is installed, a page frame may or may not hold a
physical page. Most often, a processor will have holes in physical page ranges. The last populated
physical frame kernel found is 458752 which is at 1.75GB. Comparing that to a successful boot,
last PFN on a good boot is 0x4080000 which is 258GB

Checking physical memory detection

● After kernel has initialized the memory range it is going to manage, it prints this range to console.
● Console log from a good bootup shows:

Initmem setup node 0 [mem 0x0000000000001000-0x000000207fffffff]
Initmem setup node 1 [mem 0x0000002080000000-0x000000407fffffff]

● Console log from a failed bootup shows:
Initmem setup node 0 [mem 0x0000000000001000-0x000000006fffffff]
Initmem setup node 1 [mem 0x0000000000000000-0x0000000000000000]

● Here we can see kernel’s view of memory is quite different between the good and failed cases. In
the good case, kernel sees 128GB of memory each on nodes 0 and 1. In failed case, it only sees
1.75GB of memory on node 0 and no memory on node 1.

● With just 1.75GB of memory, kernel runs out of memory quickly as it attempts to start services that
require significant amount of memory.

Did kernel fail to add all physical memory?

● Firmware detects installed physical memory modules and their mappings in physical address
range. It provides this information to the kernel.

● Kernel parses the physical memory map from firmware, sanitizes it and builds a final memory map
for use by kernel.

● On x86-64 architecture, bootloader builds a boot parameters page (called the “zeropage”). It reads
firmware provided memory map and populates an e820 table as part of zeropage. Structure of
zeropage is defined as struct boot_params in arch/x86/include/uapi/asm/bootparam.h Each
entry in e820 table is a starting physical address of memory range, size of the range and memory
type. e820_entries in struct boot_params gives the number of entries in e820 table.

● Zeropage holds the first 128 memory entries. Remaining entries, if any, continue in a
SETUP_E820_EXT node in struct setup_data

How does kernel detect physical memory?

● Kernel prints the e820 memory map to the console at bootup. If extended memory ranges are
present, those are printed as well preceded by “extended physical RAM map:” message. This
memory map is also available after bootup as /sys/firmware/memmap:
cat /sys/firmware/memmap/0/start
0x0
cat /sys/firmware/memmap/0/end
0x9efff
cat /sys/firmware/memmap/0/type
System RAM

●

Kernel’s View of Memory Ranges

BIOS-provided physical RAM map:
BIOS-e820: [mem 0x0000000000000000-0x000000000009efff] usable
BIOS-e820: [mem 0x000000000009f000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x000000005f6c1fff] usable
BIOS-e820: [mem 0x000000005f6c2000-0x0000000063510fff] reserved
BIOS-e820: [mem 0x0000000063511000-0x0000000063d71fff] ACPI NVS
BIOS-e820: [mem 0x0000000063d72000-0x0000000063ffefff] ACPI data
BIOS-e820: [mem 0x0000000063fff000-0x0000000063ffffff] usable
BIOS-e820: [mem 0x0000000064000000-0x0000000067ffffff] reserved
BIOS-e820: [mem 0x0000000069400000-0x00000000695fffff] reserved
BIOS-e820: [mem 0x0000000069e00000-0x00000000707fffff] reserved
BIOS-e820: [mem 0x00000000c0000000-0x00000000cfffffff] reserved
BIOS-e820: [mem 0x00000000fed20000-0x00000000fed7ffff] reserved
BIOS-e820: [mem 0x00000000ff000000-0x00000000ffffffff] reserved
BIOS-e820: [mem 0x0000000100000000-0x000000088f7fffff] usable

Example e820 Memory Map

● Memory setup is done in setup_arch() defined in arch/x86/kernel/setup.c
● e820__memory_setup() does the initial parsing and sanitization of e820 memory map. It calls

e820__update_table() to remove inconsistent, empty and overlapping memory ranges
● e820__memory_setup_extended() parses struct setup_data for SETUP_E820_EXT node and adds the

memory entries it finds to e820 table.
● Kernel uses memblock early allocator. Once e820 memory ranges have been cleaned up, they are added to

memblock allocator by a call to e820__memblock_setup() in setup_arch(). These memory ranges determine
how much physical memory is available on the system and how it maps on the address map for the processor

● /proc/iomem shows the current physical memory map on the system
● For NUMA systems as part of initialization, kernel calls numa_init() to determine which memory ranges belong to

each NUMA node on the system. This function uses either ACPI SRAT (System Resource Allocation Table) or
northbridge to extract NUMA locality for memory.

Memory Map parsing

● Normal reboot sequence for a system is:

● kernel → reset → firmware → bootloader → kernel

● Each of these steps takes time to execute. Firmware can take significant amount of time to initialize
all hardware for a complex system. Bootloader can add a little bit of time to this sequence as well.

● Kexec is a mechanism to shorten this reboot sequence.

● Kexec acts as a bootloader in the kernel that can load a kernel in memory, set up boot parameters
and transfer control to the kernel it loaded upon system shutdown.

● Reboot sequence with kexec becomes:

● Kernel → kexec load → new kernel

What is kexec?

● Place system into the same state as it would be in upon handoff from firmware to bootloader
● Prepare the zeropage for the next kernel that would normally be done by the bootloader
● Zeropage must be populated with kernel command line parameters and e820 table for memory

map
● Kernel builds three versions of e820 table from the table it gets from firmware:

● - e820_table_firmware: this is the original e820 table from firmware

● - e820_table_kexec: this is mostly a copy of e820_table_firmware with possible slight
modifications

● - e820_table: Sanitized and cleaned up table used by currently running kernel to set up physical
memory map

Requirements from kexec

● Looking at the dmesg from failed kernel boot again, the message “total RAM covered: 262080M”
indicates kernel could see all 256GB of RAM

● Customer had saved dmesg log from the failed kexec reboot as well as a few successful kexec
reboots just before that. Customer had cycled power after last failed reboot and was able to
provide dmesg log from boot up after power cycle as well. All of the logs showed kernel saw 256
GB of memory

● Looking at the BIOS e820 map as reported by the kernel, both spanned the same memory range
but there was one significant difference between e820 map immediately after a power cycle and
e820 map from the failed kexec reboot – After a power cycle, there were 15 entries in the map
while the failed kexec reboot had 128 entries. This is odd and the number 128 is suspicious in that
the maximum number of e820 memory entries on zeropage is 128

So where did memory go?

● From the dmesg log from boot up after power cycle, the last two e820 entries are:

● BIOS-e820: [mem 0x00000000ff000000-0x00000000ffffffff] reserved

● BIOS-e820: [mem 0x0000000100000000-0x000000407fffffff] usable

● From the dmesg log from failed kexec reboot, last e820 entry is:

● BIOS-e820: [mem 0x00000000ff000000-0x00000000ffffffff] reserved

● The entry 0x0000000100000000-0x000000407fffffff represents bulk of the RAM, 254GB. This
entry would be entry #129 which has to be passed in the SETUP_E820_EXT node of setup data

● setup_e820_entries() sets up e820 table in zeropage for kexec kernel. This function has the
comment - “TODO: Pass entries more than E820_MAX_ENTRIES_ZEROPAGE in bootparams
setup data”. That explains why the entry #129 disappeared for kexec’d kernel!

E820 memory ranges in dmesg

● When the last e820 entry for the 254GB of memory is not passed to kexec’d kernel, it is working with just 1.75GB of
memory which is not enough to start all the service system is configured to run.

● System starts out with just 15 entries in e820 table but has 129 entries after large number of kexecs.
● Comparing two successive kexec reboots, the number of e820 entries jumps by 2. This causes number of e820

entries to go from 15 to 129 with consecutive kexec reboots.
● Comparing e820 entries from two successive reboots, one of the entries is split every time into three entries.

Following entry:

● BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable

● gets split into:

● BIOS-e820: [mem 0x0000000000040000-0x000000000009e30f] usable

BIOS-e820: [mem 0x000000000009e310-0x000000000009e37f] usable

BIOS-e820: [mem 0x000000000009e380-0x000000000009ffff] usable

The case of disappearing memory

● We start with 15 entries in e820 table and each kexec splits one of the entries into three. That
means we add two entries every time kexec reboot happens. On 57 th kexec reboot, e820 table
goes from 127 to 129 entries. This triggers the bug/missing functionality in kexec that it does not
set up an extended node for additional e820 table entries and 129 th entry gets dropped.

● Next mystery is why is an e820 entry getting split into three every time kexec happens? To figure
that out, we look at the function that can be used to split an e820 entry which is
__e820__range_update()

● __e820__range_update() is called by e820__range_update() and e820__range_update_kexec().
Since it is the kexec copy of e820 table that gets passed to kexec’d kernel,
e820__range_update_kexec() looks promising. Looking at the callers for this function,
e820__memblock_alloc_rese() can be ruled out since it is used for faking an mptable which does
not apply in this case.

The case of disappearing memory contd.

● The other caller to e820__range_update_kexec() is e820__reserve_setup_data() which reserves
memory ranges for setup data by looking at setup data passed in zeropage and splits e820 entries
in kexec e820 table

● zeropage for kexec’d kernel was prepared by setup_boot_parameters() which builds and adds
EFI setup data to zeropage. This means the EFI setup data given to a kernel can be discarded
after processing and there is no need to keep the memory occupied by this data as reserved
memory. Could e820__reserve_setup_data() be reserving memory range for data that will be
synthesized again?

● Since this is an Oracle kernel based upon an older upstream kernel, it is time to check what
changes may have been made to this function in upstream kernel

Debugging splitting e820 Entry

● Oracle kernel is based on upstream 5.4.17 kernel and e820__reserve_setup_data() iterates over
setup_data reserving memory range for all setup data it finds.

● Upstream kernel at this time was 5.18 and there indeed had been a change in
e820__reserve_setup_data() where unconditional call to e820__range_update_kexec() had been
replaced with:

●

● That confirms earlier suspicion about not needing to reserve memory range for EFI setup data

Confirming the problem

/*
 * SETUP_EFI is supplied by kexec and does not need to be
 * reserved.
 */
if (data->type != SETUP_EFI)
 e820__range_update_kexec(pa_data, sizeof(*data) + data->len,
 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);

● The code change of interest was made by commit 8efbc518b884 “x86/kexec: Do not reserve EFI
setup_data in the kexec e820 table”

● Commit log for this commit says:

● This sounds very much like the problem we are looking at. Backport this commit as fix.

Fixing the problem

SETUP_EFI types, however, are used by kexec itself to enable EFI in the
2nd kernel. Thus, it is pointless to add this type of setup_data to the
kexec e820 table as reserved.

IOW, what happens is this:

 - 1st physical boot: no SETUP_EFI.

 - kexec loads a new kernel and prepares a SETUP_EFI setup_data blob, then
 reboots the machine.

 - 2nd kernel sees SETUP_EFI, reserves it both in the e820 and in the
 kexec e820 table.

 - If another kexec load is executed, it prepares a new SETUP_EFI blob and
 then reboots the machine into the new kernel.

 5. The 3rd kexec-ed kernel has two SETUP_EFI ranges reserved. And so on...

● Kernel makes significant amount of information available to help with debugging functional and
performance problems

● Kernel information is available through procfs (mounted on /proc), sysfs (mounted on /sys) and
debugfs (mounted on /sys/kernel/debug).

● Various files in these filesystems contain counters for events and objects that can provide insight
into current state of mm subsystem

● Documentation in Documentation/filesystems/proc.txt, Documentation/filesystems/sysfs.txt and
Documentation/admin-guide/mm

● Information in these files is updated dynamically

Information available from Kernel

● Data is populated by meminfo_proc_show() in fs/proc/meminfo.c
● Interesting counters:

○ MemFree: Memory available on free list

○ MemAvailable: Memory that can be made available through reclamation

○ Cached: Memory consumed by pagecache

○ Mlocked: Pages locked into memory through mlock() call

○ Slab: Memory consumed by slab objects

○ HugePages_Total: Memory pre-allocated for hugepages

/proc/meminfo

● Data is populated by vmstat_show() in mm/vmstat.c
● Hint: To find the counters shown in this file, change the name in /proc/vmstat to all capital letters

and search in source code
● Interesting counters (too many to mention):

○ allocstall_*: stalls doing direct reclamation

○ compact_*: counters for various compaction events

○ drop_pagecache: number of times pagecache was dropped through write to
/proc/sys/vm/drop_caches

○ thp_*: counters for Transparent HugePages (THP) related events

/proc/vmstat

● Data is populated by zoneinfo_show() in mm/vmstat.c
● Similar information as in /proc/meminfo but broken down by memory zones. Important: Unit for

counters is pages
● Interesting counters:

○ min, low, high: per-zone watermarks

○ managed: number of managed pages in the zone

○ cma: pages reserved for CMA allocations

/proc/zoneinfo

● /proc/iomem: current memory map for all addresses on the system
● /proc/kpagecount: binary file with an array of u64 representing number of mappings of each

physical page, populated by kpagecount_read() in fs/proc/page.c
● /proc/kpageflags: binary file with an arracy of u64 representing flags for each physical page
● /proc/pagetypeinfo: count of pages of different types in each zone on each numa node
● /proc/slabinfo: memory use by various slab objects
● /proc/vmallocinfo: Shows vmalloced areas. Details in Documentation/filesystems/proc.rst
● /sys/kernel/debug/extfrag/extfrag_index: current external fragmentation for each zone. Look up

extfrag_threshold in Documentation/admin-guide/sysctl/vm.rst for interpretation of values

Other interesting files

● ftrace: used for tracing events inside kernel. Kernel has a large number of event points that can be
enabled dynamically without rebuilding the kernel. See Documentation/trace/ftrace.rst for details

● kprobetrace: kprobe based event tracer. This is more versatile than ftrace since it supports adding
and removing probes on the fly. See Documentation/trace/kprobetrace.rst for details

● bpftrace: supports instrumentation and scripting using various probes like tracepoint, kprobe and
others. More information at https://bpftrace.org

● drgn: drgn supports easy scriptability to debug kernel. More information at
https://drgn.readthedocs.io/en/latest/

● Much more performance monitoring and tracing tools information at https://www.brendangregg.com

Some debug tools

https://bpftrace.org/
https://drgn.readthedocs.io/en/latest/
https://www.brendangregg.com/

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for your
continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills and
resources to experiment, learn and contribute effectively to open source communities.

● Outreachy remote internships program supports diversity in open source and free software
● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and

publications to help you explore the open source technology landscape.
● Linux Foundation Events also provide educational content across a range of skill levels and

topics, as well as the chance to meet others in the community, to collaborate, exchange
ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us
today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

	Slide 1
	Title
	Agenda
	A Developer's Investigative Toolbox
	Customer problem
	Stack Trace
	Digging through console log
	Memory information in console log
	Checking physical memory detection
	Did kernel fail to add all physical memory?
	How does kernel detect physical memory?
	Kernel's view of memory ranges
	Example e820 Memory Map
	Memory map parsing
	What is kexec?
	Requirements from kexec
	So where did memory go?
	e820 memory ranges in dmesg
	The case of disappearing memory
	The case of disappearing memory contd.
	Debugging splitting e820 entry
	Confirming the problem
	Fixing the problem
	Information available from kernel
	/proc/meminfo
	/proc/vmstat
	/proc/zoneinfo
	Other interesting files
	Some debug tools
	Slide 30

