CILFive

MENTORSHIP SERIES

CILF [ive oo

The Linux Kernel
Concurrency Sanitizer

Marco Elver, Senior Software Engineer, Google

a | N A

Introduction and Agenda
« Background on Data Races
* The Linux Kernel Memory Consistency Model
* Linux-Kernel Data-Race Detection with KCSAN
« Concurrency Bugs Beyond Data Races

Scope and Expectations

* Understanding of Data Races
» Brief Introduction to Memory Consistency Models
« Building and Using Kernels with KCSAN

CILF [ive s
Problem

Thinking about multiple threads of execution is notoriously difficult
Tension between performant vs. simpler synchronization mechanisms
Numerous advanced synchronization mechanisms

Kernel's job inherently concurrent

We need tool assistance!

-

a | N A

Background

Y MENTORSHIP
CILF v o
What are data races?

C-language and compilers evolved oblivious to concurrency
Optimizing compilers are becoming more creative

load tearing,
store tearing,
load fusing,
store fusing,
code reordering,
invented loads,
invented stores,
... and more!

1. Need to tell compiler about concurrent code

2] "Who's afraid of a big bad optimizing compiler?”, LWN 2019. URL: https://lwn.net/Articles/793253/

https://lwn.net/Articles/793253/

Y MENTORSHIP
CILF v o
What are data races?

Defined via language's memory consistency model (more detail later):

e C-language and compilers no longer oblivious to concurrency:
o C11 introduced memory model: "data races cause undefined behaviour"
o Not Linux's model!

e Linux kernel has its own memory model, giving semantics to concurrent code

a | N A

What are data races?

Basic definition:

1. Concurrent conflicting accesses

o They conflict if they access the same location and at least one is a write

2. Atleast one is a plain access (e.g. "x + 42")

o Not specially marked for synchronization (compiler assumes no concurrency)

Y MENTORSHIP
CILF v o
What are data races?

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture.
— Avoid having to reason "Is this data race benign?"
2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
— E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.
3. Prevent bugs, and countless hours debugging elusive race conditions!

MENTORSHIP

CILF [ve =

Concurrency vs. Compiler Optimizations

void foo(int *x)

{
if (*x) a = 42;
if (*x) b = 42;

optimize: fuse loads

void foo(int *x)

{
if (*x) {
a = 42;
b = 42;
}
}

10

MENTORSHIP

CILF [ve =

Concurrency vs. Compiler Optimizations

void foo(int *x)
{
if (*x) a
if (*x) b

42;
42,

optimize: fuse loads

void badwait(int *stop)

{
while (!*stop);

}

void foo(int *x)

{
if (*x) {
a = 42;
b = 42;
}
}

void badwait(int *stop)
{
if (!*stop) {
while(1);
}

11

CILF e

MENTORSHIP

SERIES

Concurrency vs. Compiler Optimizations

void badwait(int *stop)
{

WRITE_ONCE (*stop, 1);

<

while (!*stop);
}

void badwait(i Fstop)
{
if (!*stop) {
while(1);
}

12

a | N A

Concurrency vs. Compiler Optimizations

void badwait(int *stop)

(WRITE_ONCE(*stop, 1);

while (!READ_ONCE(*stop));
}

void badwait(int *stop)

while (!*stop); _— | while(1);

}7/ \

13

a | N A

Data races often symptom of more serious issue

BUG: KCSAN: data-race in __ fat_write_inode / fatl2_ent_get
write to Oxffff8881015f423c of 4 bytes by task 9966 on cpu

__fat_write_inode+0x246/0x510 fs/fat/inode.c:877

read to Oxffff8881015f423d of 1 bytes by task 9960 on cpu
fatl2_ent_get+0x5e/0x120 fs/fat/fatent.c:125

1:

0:

Careful, if symptom of higher-level issue!

=

fat: don't allow to mount if the FAT length ==

If FAT length == 0, the image doesn't have any data. And it can be the
cause of overlapping the root dir and FAT entries.

Also Windows treats it as invalid format.

Reported-by: syzbot+6f1624f937d9d6911e2d@syzkaller.appspotmail.com
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

Cc: Marco Elver <elver@google.com>

Cc: Dmitry Vyukov <dvyukov@google.com>

Link: http://lkml.kernel.org/r/87rlwz8mrd.fsf@mail.parknet.co.jp
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Diffstat
-rw-r--r-- fs/fat/inode.c 6 Wl

3 changed, 6 insertions, 0 deletions

diff --git a/fs/fat/inode.c b/fs/fat/inode.c

index e6e68b2274a5c..abcf99debblec 100644

--- a/fs/fat/inode.c

+++ b/fs/fat/inode.c

@@ -1519,6 +1519,12 @@ static int fat read bpb(struct super block *sb, struct

goto out;

}
+ if (bpb->fat fat length == 0 && bpb->fat32 length == 0) {
- if (!silent)
. fat_msg(sb, KERN_ERR, "bogus number of FAT sectors");
- goto out;
* }
" 14

error = 0;

-

a | N A

The Linux Kernel Memory
Consistency Model (LKMM)

15

v MENTORSHIP
CILF [ive
What is a memory consistency model?

* What's the behaviour of memory accesses on a multiprocessor system?

« Or simply: What value does a read access observe?

« To write correct concurrent code, programmer needs to understand the semantics of
the system they are programming

Memory consistency model specifies ordering guarantees of memory operations
with which the programmer can reason about parallel programs

16

f MENTORSHIP
CILF [ive
What is a memory consistency model?

Exists at different levels in our stack:

e At hardware level, architecture has a memory model (system-centric model)

o x86-TSO, Armv8, Armv7, PowerPC, Alpha
e Programming language should have its own (programmer-centric model)

o C++11[1,2], C11, Java

17

http://dx.doi.org/10.1007/978-3-642-03359-9_27
https://www.cl.cam.ac.uk/~pes20/popl16-armv8/top.pdf
https://dl.acm.org/doi/10.1145/2627752
https://dl.acm.org/doi/10.1145/1993498.1993520
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
https://dl.acm.org/doi/10.1145/1375581.1375591
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf
https://dl.acm.org/doi/10.1145/1047659.1040336

v MENTORSHIP
CILF [ive
Language-Level Memory Models

* Required to deal with compiler optimizations vs. concurrent code
« Distinguishes
— "marked" (viz. atomic, or synchronization) and
— "plain" (viz. "ordinary", non-atomic, or data) accesses
« Atomicity and ordering guarantees of marked accesses w.r.t. other accesses

« Marked atomic accesses building blocks for synchronization
« Compiler must not transform code in ways that would weaken memory model

] S. Adve, K. Gharachorloo, "Shared Memory Consistency Models: A Tutorial", 1996 18

https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf

f MENTORSHIP
CILF [ive w
Trade-offs Between Performance and Programmability

- Strictest and simplest model is Sequential Consistency (SC)
« Weak memory models offer more opportunities for speculation = Performance!

Programmer-centric

Java [MPAOS]
C++11 [ISO11b; BAOS]
C11 [ISO11a]

PL1 [Gha95] PL2 [Gha95] LKMM HRF-direct[How+14]
L. . DRFO [Adv93] DRF1 [Adv93] HRF-indirect[How+14]
optimization -
potential g
SC [Lam79] RCsc [Gha95; Gha+90] POWER [Alg+12; AMT14; Mad+12; Sar+11]
TSO [SPA92; 0SS09] RCpc [Gha95; Gha+90] ARMv7 [AMT14] RMO-GPU [Alg+15]
PC [Gha+90] ARMVS [Flu+16]
PSO [SPA92] RMO [SPA94; Gha95]
WO [DSB86]

System-centric Source: marcoelver.com/res/melver-thesis.pdf 19

https://ieeexplore.ieee.org/document/1675439
https://www.marcoelver.com/res/melver-thesis.pdf

f MENTORSHIP
CILF [ive w
The Linux Kernel Memory Consistency Model (LKMM)

« The Linux kernel's requirements resulted in a non-standard memory model

» Evolved, with many changes over the years (remember ACCESS_ONCE()?)

« The formal LKMM (tools/memory-model) incomplete vs. real code

* Informal documentation (memory-barriers.txt) not complete either: "[...] This
document is not a specification; it is intentionally (for the sake of brevity) and
unintentionally (due to being human) incomplete. [...]"

2 J. Alglave et al., "Erightening small children and disconcerting grown-ups: Concurrency in the Linux kernel", 2018 20

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/asplos18.pdf

a | N A

LKMM: Basic Marked Accesses

Primitive Result Orders

READ_ONCE (x) read of x later dependent reads+marked writes
WRITE_ONCE(x, Y) write Y to x none

smp_load_acquire(&x) read of x later reads+writes
smp_store_release(&x, Y) | write Yto x earlier reads+writes
rcu_dereference(x) read of x later dependent reads+marked writes
smp_mb() none earlier+later reads+writes

smp_rmb() none earlier+later reads

smp_wmb () none earlier+later writes

21

CILFive e
Dependency Ordering

* READ _ONCE() and rcu_dereference() orders later:

— address-, data-, and control-dependent marked writes
— address-dependent reads

22

a | N A

Dependency Ordering

/* Address dependency */ /* Data dependency */ /* Control dependency */
X = READ_ONCE(*fo0); x = READ_ONCE (*foo0); X = READ_ONCE (*foo0);
. = READ_ONCE (*x); X += 42; if (x) {
WRITE_ONCE(*bar, x); WRITE_ONCE(*bar, 42);
}

/*Ngt ordered by control

depend *
Warning: Most tricky aspect of LKMM and likely to change Xeze:EZD o / *Foo):

in future because compilers can still break dependencies. if (x) {

Further reading: Status Report: Broken Dependency = READ_ONCE(*bar);
Orderings in the Linux Kernel }

23

https://lpc.events/event/16/contributions/1174/attachments/1108/2121/Status%20Report%20-%20Broken%20Dependency%20Orderings%20in%20the%20Linux%20Kernel.pdf
https://lpc.events/event/16/contributions/1174/attachments/1108/2121/Status%20Report%20-%20Broken%20Dependency%20Orderings%20in%20the%20Linux%20Kernel.pdf

'-l LF l"w MENTORSHIP
L SERIES
Many more marked accesses in LKMM

« All atomic_t accessors
* Atomic read-modify-writes: xchg(), cmpxchg() and variants
« Atomic bitops

24

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/html/latest/core-api/wrappers/atomic_bitops.html

a | N A

What are data races in the LKMM?

Data races (X) occur if: Thread @ Thread 1
« Concurrent conflicting accesses X| - =x+b e
— they conflict if they access X |- x+ WRITE_ONCE(x, 0xofo);
the same location and at
least one is a write = READ_ONCE(x) + 1; X = 0xfofo;
* Atleast one is a plain access
X | - = READ_ONCE(x) + 1; X++;
X = Oxffoo; X = Oxff;
o | -+ = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xfof0);
‘/ WRITE_ONCE(x, 0xffo0); WRITE_ONCE(x, Oxff); 25

Y MENTORSHIP
CILF v o
Intentional Data Races

The Linux kernel says that data races do not result in undefined behaviour of the
whole kernel

Locally "undefined" behaviour: where code still operates correctly even with
potentially random data, data races are tolerated (truly "benign" data races)
Mark such data races with "data_race(.. data-racy expression ..)"

o Helps tooling understand they are intentional
o Document intent

For more guidance, see access-marking.txt

26

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

-

a | N A

Linux-Kernel Data-Race Detection

27

ﬁ

L]

source files
/
binary files

LF l"w MENTORSHIP
SERIES

Dynamic Analysis

Runtime Libraries

I Executable

Instrumentation

runtime

] checks

(compiler-inserted, binary rewriting)

2 Dmitry Vyukov, "Dynamic Program Analysis for Fun and Profit", LF Webinar 2021

28

https://www.linuxfoundation.org/webinars/dynamic-program-analysis-for-fun-and-profit

a | N A

Past Attempts at Kernel Data-Race Detectors

Kernel Thread Sanitizer (KTSAN): google.qgithub.io/kernel-sanitizers/KTSAN.html

Compiler-instrumentation based (-fsanitize=thread)
Runtime: Same algorithm as user space ThreadSanitizer (TSan v2)

o Happens-before race detector (vector clocks)
Pros: few false negatives, precise, detects memory ordering issues (missing

memory barriers etc.)
Cons: scalability, memory overhead, false positives without annotating all
synchronization primitives

29

https://google.github.io/kernel-sanitizers/KTSAN.html

CILF [ivg renos

Past Attempts at Kernel Data-Race Detectors

int x;
int x;
-fsanitize=thread —_tsan_write4(&x);
e | > X = 42;
=% _ tsan_read4(&x);

e = 3§

30

Y MENTORSHIP
CILF e o
Past Attempts at Kernel Data-Race Detectors

Watchpoint-based race detection:
e RaceHound: github.com/kmrov/racehound

e DataCollider: John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
"Effective Data-Race Detection for the Kernel", OSDI 2010

e Basic ldea:

o set HW watchpoint + delay
o if breakpoint triggered = race!
o if value changed = race!

Why did they never make it into the mainline Linux kernel?

31

https://github.com/kmrov/racehound
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf

Requirement

Runtime performance
Low memory overhead

Prefer false negatives over
false positives

Maintenance: unintrusive to
rest of kernel

Scalable memory access
instrumentation

Language-level access aware
(LKMM-compatibility)

MENTORSHIP

CILF [ve =

Unique Linux-Kernel Requirements

RaceHound | DataCollider

v

Kernel Thread Sanitizer
(KTSAN)

4
X

Kernel Concurrency Sanitizer
(KCSAN)

4
v

32

f MENTORSHIP
CILF [ive w
The Kernel Concurrency Sanitizer (KCSAN)

Compiler-instrumentation based dynamic race detector

Detects "data races" by default (more with special assertions, discussed later)
Available since Linux 5.8

Notable improvements (and relevant release):

o Distinguishing read-modify-write accesses (5.10)

o Show value changes (5.14)

o More filtering data races (5.15)

o Detection of data races due to missing memory barriers (5.17)

33

f MENTORSHIP
CILF [ive w
The Kernel Concurrency Sanitizer (KCSAN)

Basic idea: Observe that 2 accesses happen concurrently
Which accesses: Let compiler instrument memory accesses

int x;
int x;
-fsanitize=thread __tsan_write4(&x);
S L X = 42;
[

__tsan_read4(&x);
.= X5

1l
x
“e

34

f MENTORSHIP
CILF [ive w
The Kernel Concurrency Sanitizer (KCSAN)

e (Catch races using "soft" watchpoints:
— Set watchpoint, and stall access
— If watchpoint already exists = race!
— If value changed = race!
— Stall accesses with random delays to increase chance to observe race
m Default: uniform between [1,80] us for tasks, [1,20] us for interrupts

e Sampling: periodically set up watchpoints
— Default: every ~2000 accesses (uniform random [1,4000])
— Caveat: lower probability to detect rare races
m Offset by good stress tests, or fuzzers like syzkaller

35

https://github.com/google/syzkaller

f MENTORSHIP
CILF [ive w
The Kernel Concurrency Sanitizer (KCSAN)

Usage:
e Supported architectures: x86-64, arm64, s390, mips, powerp, xtensa
e Compiler requirement: Clang 11+, GCC 11+
e Build your kernel with CONFIG_KCSAN=y
o For debugging and testing kernel
o Not recommended for production kernels — more than 5x slowdown
e Suggested: CONFIG_KCSAN _STRICT=y (since 5.17)
o "Strict" LKMM rules (but as of 6.4 still noisy)
o Includes weak memory modeling (detect missing memory barriers)

36

a | N A

make menuconfig

.config - Linux/x86 6.5.0-rc2 Kernel Configuration

Linux/x86 6.5.0-rc2 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ———> (or empty
submenus ———-). Highlighted letters are hotkeys. Pressing <Y> includes,
N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?>
for Help, </> for Search. Legend: [*] built-in [] excluded <M> module
(=)
Executable file formats -——>
Memory Management options ——>
[*] Networking support -—-——>
Device Drivers -——>
File systems ——>
Security options -——>
—%- Cryptographic API ——>

Library routines --——>
[} Kernel hacking --—-

< Exit > <Help> < Save> < Load >

37

a | N A

make menuconfig

.config - Linux/x86 6.5.0-rc2 Kernel Configuration
> Kernel hacking

Kernel hacking
Arrow keys navigate the menu. <Enter> selects submenus ———> (or empty
submenus -——-). Highlighted letters are hotkeys. Pressing <Y> includes,
N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?>
for Help, </> for Search. Legend: [*] built-in [] excluded <M> module

printk and dmesg options -—>
—x— Kernel debugging
[¥] Miscellaneous debug code
Compile-time checks and compiler options -—-——>
T Generic Kernel Debugging Instrunents ~—>
Networking Debugging -——>
Memory Debugging -—>
[1 Debug shared IRQ handlers
Debug Oops, Lockups and Hangs -—-—>

Vv (4)

<Exit> <Help> <Save> < Load >

38

a | N A

make menuconfig

.config - Linux/x86 6.5.0-rc2 Kernel Configuration
> Kernel hacking > Generic Kernel Debugging Instruments

Generic Kernel Debugging Instruments
Arrow keys navigate the menu. <Enter> selects submenus ———> (or empty
submenus ——-). Highlighted letters are hotkeys. Pressing <Y> includes,
N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?>
for Help, </> for Search. Legend: [*] built-in [] excluded <M> module

[¥] Magic SysRq key
(0x1) Enable magic SysRg key functions by default
[*] Enable magic SysRq key over serial

() Char sequence that enables magic SysRq over serial
—*— Debug Filesystem

Debugfs default access (Access normal) —>
] KGDB: kernel debugger —-—-
]

[
[] Undefined behaviour sanity checker -——-
[]] KCSAN: dynamic data race detector ———

<Exit > <Help> < Save> < Load >

39

a | N A

make menuconfig

.config - Linux/x86 6.5.0-rc2 Kernel Configuration

] > Generic Kernel Debugging Instruments > KCSAN: dynamic data race detector

KCSAN: dynamic data race detector
Arrow keys navigate the menu. <Enter> selects submenus —-——> (or empty
submenus ———-). Highlighted letters are hotkeys. Pressing <Y> includes,
N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?>
for Help, </> for Search. Legend: [*] built-in [] excluded <M> module

B- KCSAN: dynamic data race detecto

[*] Perform short selftests on boot

<M> KCSAN test for integrated runtime behaviour

[*] Early enable during boot

(64) Number of available watchpoints

(80) Delay in microseconds (for tasks)

(20) Delay in microseconds (for interrupts)

[*] Randomize above delays

(4000) Skip instructions before setting up watchpoint
v(+)

< Exit > < Help> < Save> < Load >

40

a | N A

make menuconfig

.config - Linux/x86 6.5.0-rc2 Kernel Configuration

[...] > Generic Kernel Debugging Instruments > KCSAN: dynamic data race detector

KCSAN: dynamic data race detector
Arrow keys navigate the menu. <Enter> selects submenus ——> (or empty

submenus ——-). Highlighted letters are hotkeys. Pressing <Y> includes,

N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <7?>

for Help, </> for Search. Legend: [*] built-in [] excluded <M> module

=)

(80) Delay in microseconds (for tasks)

(20) Delay in microseconds (for interrupts)

[x] Randomize above delays

(4000) Skip instructions before setting up watchpoint
[*] Randomize watchpoint instruction skip count

[*] Report races of unknown origin
[[¥] Strict data-race checking

v(+)

< Exit > < Help> < Save> < Load >

(3000) Duration in milliseconds, in which any given race is only rep

[*] Enable weak memory modeling to detect missing memory barrier

41

Y MENTORSHIP
CILF v o
Booting the Kernel with KCSAN

0.653289] Freeing SMP alternatives memory: 52K

0.653823] pid_max: default: 32768 minimum: 301

0.654967] LSM: initializing lsm=capability,selinux,integrity

0.655855] SELinux: Initializing.

0.657059] Mount-cache hash table entries: 32768 (order: 6, 262144 bytes, linea

)
0.657841] Mountpoint-cache hash table entries: 32768 (order: 6, 262144 bytes,

inear)

0.660704] : enabled early

0.660823] [(&Fl): non-strict mode configured — use CONFIG_KCSAN_STRICT=y to see
all data races

0.662170] smpboot: CPU@: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz (family: 0x6
model: @x55, stepping: 0x4)

0.664104] RCU Tasks: Setting shift to 3 and lim to 1 rcu_task_cb_adjust=1.

0.664900] Performance Events: Skylake events, full-width counters, Intel PMU d

42

Title: Shows which 2 functions raced
Access information: Shows type of
operation (read, write, read-write, and
if marked), address, size, which task

u | N A

Understanding KCSAN Reports

(or interrupt), and on which cpu
Optional: Shows lockdep info if
compiled with:

O
O

CONFIG_PROVE_LOCKING=y
CONFIG_KCSAN_VERBOSE=y

BUG: KCSAN: data-race in <function-1> / <function-2> title/summary

<operation> to <address> of <size> bytes by <context-1> on cpu <nr>:
<call trace from function-1>
access 1

<optional: locks held by context-1> lockdep info (optional)

<operation> to <address> of <size> bytes by <context-2> on cpu <nr>:
<call trace from function-2>
access 2

<optional: locks held by context-2> lockdep info (optional)

Reported by Kernel Concurrency Sanitizer on:
<system info>

43

u | N A

Severity of Data Races

Often the existence of a data race is merely a symptom of a bigger issue!

Data race may point out the following concurrency bugs:

A.

Race-condition bugs where the resulting error manifests as a data race, followed by eventual
system failure. Simply marking the accesses does not fix the problem. The fix requires more
invasive changes to program logic (for example adding required locking).

Miscompilation may introduce bugs that can lead to system failure. The fix requires using
appropriate marked atomic accesses. Requires no fundamental changes in program logic to fix.
Miscompilation may introduce tolerated inaccuracies ("benign data race"), but does not lead to
system failure. Typically approximate diagnostics. Marking with data_race(..) is sufficient.

Important: Avoid hiding bugs of type (A) by blindly marking data races!

44

-

a | N A

Beyond Data Races

45

a | N A

Concurrency Bugs That Are Not Data Races

Thread ©

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared_foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

46

Thread ©

a | N A

Concurrency Bugs That Are Not Data Races

Thread 1

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared_foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

/* update_foo_lock does not
need to be held! */
. = READ_ONCE(shared_foo0);

47

CILF e

MENTORSHIP
SERIES

Concurrency Bugs That Are Not Data Races

Thread ©

Thread 1

Thread 2

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared_foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

/* update_foo_lock does not
need to be held! */
. = READ_ONCE(shared_foo0);

/* Bug! */
WRITE_ONCE (shared_foo, 42);

48

MENTORSHIP

CILF [ve =

Concurrency Bugs That Are Not Data Races

Thread © Thread 1 Thread 2
spin_lock(&update_foo lock); /* update_foo_lock does not H—Bugt—=/
need to be held! */ WREIFE—ONEE(Shared—foo—42)

/* No other writers to shared_foo. */
ASSERT_EXCLUSIVE_WRITER(shared_foo);
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

... = READ_ONCE(shared_foo);

49

CILF e

MENTORSHIP
SERIES

Detecting More Concurrency Bugs

ASSERT_EXCLUSIVE family of macros:

e Specify properties of concurrent code, where bugs are not normal data races

e Reported as: BUG: KCSAN: assert: race in <funcl> / <func2>

concurrent writes

concurrent reads

ASSERT_EXCLUSIVE_WRITER(var)

ASSERT_EXCLUSIVE_WRITER_SCOPED(var) v
ASSERT_EXCLUSIVE_ACCESS(var) %
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)

ASSERT_EXCLUSIVE_BITS(var, mask) ~maskv | maskX v

50

v MENTORSHIP
CILF [ive
Concurrency Testing Best Practices

Design test cases to cover both expected and unexpected interleavings

Ensure to include test cases that cover different concurrency aspects of the code
Ensure to include test cases that mimic real-world scenarios

Stress test with a high number of threads that simulates worst case scenarios
Design test cases that quickly execute to-be-tested code repeatedly

akrowbd-~

& Brendan Higgins, "KUnit Testing Strategies", LF Webinar 2021
® Andrey Konovalov, "Fuzzing the Linux Kernel", LF Webinar 2021 51

https://www.linuxfoundation.org/webinars/fuzzing-linux-kernel
https://www.linuxfoundation.org/webinars/kunit-testing-strategies

-

a | N A

Summary

52

CILF [ivg s
Summary

e Concurrency in the Linux kernel is challenging
e The LKMM provides the foundation for writing concurrent code in the kernel
e Use KCSAN to help detect concurrency bugs early, and avoid data races

Kernel Documentation: docs.kernel.org/dev-tools/kcsan.html

Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexander Potapenko, Kostya
Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa, Peter Zijlstra, Will Deacon, Daniel Lustig, Boqun
Feng, Joel Fernandes, Jade Alglave, and Luc Maranget. "Concurrency bugs should fear the big bad
data-race detector." Linux Weekly News (LWN), 2020. URL.: https://lwn.net/Articles/816850/

53

https://lwn.net/Articles/816850/
https://docs.kernel.org/dev-tools/kcsan.html

'-l L F 'w MENTORSHIP
L SERIES
Thank you for joining us today!
We hope it will be helpful in your journey to learning more about effective and productive

participation in open source projects. We will leave you with a few additional resources for
your continued learning:

e The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

e Outreachy remote internships program supports diversity in open source and free
software

e Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

e Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

54

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

