
1

The Linux Kernel
Concurrency Sanitizer

Marco Elver, Senior Software Engineer, Google

2

Introduction and Agenda
• Background on Data Races
• The Linux Kernel Memory Consistency Model
• Linux-Kernel Data-Race Detection with KCSAN
• Concurrency Bugs Beyond Data Races

Scope and Expectations
• Understanding of Data Races
• Brief Introduction to Memory Consistency Models
• Building and Using Kernels with KCSAN

3

Problem

● Thinking about multiple threads of execution is notoriously difficult
● Tension between performant vs. simpler synchronization mechanisms
● Numerous advanced synchronization mechanisms
● Kernel's job inherently concurrent

We need tool assistance!

4

Background

5

What are data races?

● C-language and compilers evolved oblivious to concurrency
● Optimizing compilers are becoming more creative
● load tearing,
● store tearing,
● load fusing,
● store fusing,
● code reordering,
● invented loads,
● invented stores,
● … and more!

📖 "Who's afraid of a big bad optimizing compiler?", LWN 2019. URL: https://lwn.net/Articles/793253/

⚠ Need to tell compiler about concurrent code

6

https://lwn.net/Articles/793253/

What are data races?

Defined via language's memory consistency model (more detail later):

● C-language and compilers no longer oblivious to concurrency:
○ C11 introduced memory model: "data races cause undefined behaviour"
○ Not Linux's model!

● Linux kernel has its own memory model, giving semantics to concurrent code

7

What are data races?

Basic definition:

1. Concurrent conflicting accesses

○ They conflict if they access the same location and at least one is a write

2. At least one is a plain access (e.g. "x + 42")

○ Not specially marked for synchronization (compiler assumes no concurrency)

8

What are data races?

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture.
– Avoid having to reason "Is this data race benign?"

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
– E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.

3. Prevent bugs, and countless hours debugging elusive race conditions!

9

Concurrency vs. Compiler Optimizations

void foo(int *x)

{

 if (*x) a = 42;

 if (*x) b = 42;

}

void foo(int *x)

{

 if (*x) {

 a = 42;

 b = 42;

 }

}

optimize: fuse loads

10

Concurrency vs. Compiler Optimizations

void foo(int *x)

{

 if (*x) a = 42;

 if (*x) b = 42;

}

void foo(int *x)

{

 if (*x) {

 a = 42;

 b = 42;

 }

}

optimize: fuse loads

void badwait(int *stop)

{

 if (!*stop) {

 while(1);

 }

}

void badwait(int *stop)

{

 while (!*stop);

}

11

Concurrency vs. Compiler Optimizations

WRITE_ONCE(*stop, 1);

void badwait(int *stop)

{

 if (!*stop) {

 while(1);

 }

}

void badwait(int *stop)

{

 while (!*stop);

}

12

Concurrency vs. Compiler Optimizations

WRITE_ONCE(*stop, 1);

void badwait(int *stop)

{

 if (!*stop) {

 while(1);

 }

}

void badwait(int *stop)

{

 while (!*stop);

}

void badwait(int *stop)

{

 while (!READ_ONCE(*stop));

}

✔

13

Data races often symptom of more serious issue
BUG: KCSAN: data-race in __fat_write_inode / fat12_ent_get

write to 0xffff8881015f423c of 4 bytes by task 9966 on cpu 1:

 __fat_write_inode+0x246/0x510 fs/fat/inode.c:877

 ...

read to 0xffff8881015f423d of 1 bytes by task 9960 on cpu 0:

 fat12_ent_get+0x5e/0x120 fs/fat/fatent.c:125

 ...

Careful, if symptom of higher-level issue! 14

The Linux Kernel Memory
Consistency Model (LKMM)

15

What is a memory consistency model?

• What's the behaviour of memory accesses on a multiprocessor system?
• Or simply: What value does a read access observe?
• To write correct concurrent code, programmer needs to understand the semantics of

the system they are programming

Memory consistency model specifies ordering guarantees of memory operations
with which the programmer can reason about parallel programs

16

What is a memory consistency model?

Exists at different levels in our stack:

● At hardware level, architecture has a memory model (system-centric model)
○ x86-TSO, Armv8, Armv7, PowerPC, Alpha

● Programming language should have its own (programmer-centric model)
○ C++11 [1,2], C11, Java

17

http://dx.doi.org/10.1007/978-3-642-03359-9_27
https://www.cl.cam.ac.uk/~pes20/popl16-armv8/top.pdf
https://dl.acm.org/doi/10.1145/2627752
https://dl.acm.org/doi/10.1145/1993498.1993520
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
https://dl.acm.org/doi/10.1145/1375581.1375591
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf
https://dl.acm.org/doi/10.1145/1047659.1040336

Language-Level Memory Models

• Required to deal with compiler optimizations vs. concurrent code
• Distinguishes

– "marked" (viz. atomic, or synchronization) and
– "plain" (viz. "ordinary", non-atomic, or data) accesses

• Atomicity and ordering guarantees of marked accesses w.r.t. other accesses
• Marked atomic accesses building blocks for synchronization
• Compiler must not transform code in ways that would weaken memory model

📖 S. Adve, K. Gharachorloo, "Shared Memory Consistency Models: A Tutorial", 1996 18

https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf

Trade-offs Between Performance and Programmability

• Strictest and simplest model is Sequential Consistency (SC)
• Weak memory models offer more opportunities for speculation ⇒ Performance!

Source: marcoelver.com/res/melver-thesis.pdf

LKMM

19

https://ieeexplore.ieee.org/document/1675439
https://www.marcoelver.com/res/melver-thesis.pdf

The Linux Kernel Memory Consistency Model (LKMM)

• The Linux kernel's requirements resulted in a non-standard memory model
• Evolved, with many changes over the years (remember ACCESS_ONCE()?)
• The formal LKMM (tools/memory-model) incomplete vs. real code
• Informal documentation (memory-barriers.txt) not complete either: "[...] This

document is not a specification; it is intentionally (for the sake of brevity) and
unintentionally (due to being human) incomplete. [...]"

📖 J. Alglave et al., "Frightening small children and disconcerting grown-ups: Concurrency in the Linux kernel", 2018 20

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/asplos18.pdf

LKMM: Basic Marked Accesses

Primitive Result Orders

READ_ONCE(x) read of x later dependent reads+marked writes

WRITE_ONCE(x, Y) write Y to x none

smp_load_acquire(&x) read of x later reads+writes

smp_store_release(&x, Y) write Y to x earlier reads+writes

rcu_dereference(x) read of x later dependent reads+marked writes

smp_mb() none earlier+later reads+writes

smp_rmb() none earlier+later reads

smp_wmb() none earlier+later writes
21

Dependency Ordering

• READ_ONCE() and rcu_dereference() orders later:
– address-, data-, and control-dependent marked writes
– address-dependent reads

22

Dependency Ordering

/* Address dependency */

x = READ_ONCE(*foo);

… = READ_ONCE(*x);

/* Control dependency */

x = READ_ONCE(*foo);

if (x) {

 WRITE_ONCE(*bar, 42);

}

/* Data dependency */

x = READ_ONCE(*foo);

x += 42;

WRITE_ONCE(*bar, x);

/* Not ordered by control

dependency */

x = READ_ONCE(*foo);

if (x) {

 y = READ_ONCE(*bar);

}

Warning: Most tricky aspect of LKMM and likely to change
in future because compilers can still break dependencies.

Further reading: Status Report: Broken Dependency
Orderings in the Linux Kernel

23

https://lpc.events/event/16/contributions/1174/attachments/1108/2121/Status%20Report%20-%20Broken%20Dependency%20Orderings%20in%20the%20Linux%20Kernel.pdf
https://lpc.events/event/16/contributions/1174/attachments/1108/2121/Status%20Report%20-%20Broken%20Dependency%20Orderings%20in%20the%20Linux%20Kernel.pdf

Many more marked accesses in LKMM

• All atomic_t accessors
• Atomic read-modify-writes: xchg(), cmpxchg() and variants
• Atomic bitops

24

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/html/latest/core-api/wrappers/atomic_bitops.html

What are data races in the LKMM?
Data races (✘) occur if:

• Concurrent conflicting accesses
– they conflict if they access

the same location and at
least one is a write

• At least one is a plain access

 Thread 0 Thread 1
… = x + 1; x = 0xf0f0;

… = x + 1; WRITE_ONCE(x, 0xf0f0);

… = READ_ONCE(x) + 1; x = 0xf0f0;

… = READ_ONCE(x) + 1; x++;

✘

✘

✘

… = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xf0f0);✔

✘

x = 0xff00; x = 0xff;✘

WRITE_ONCE(x, 0xff00); WRITE_ONCE(x, 0xff);✔ 25

Intentional Data Races

● The Linux kernel says that data races do not result in undefined behaviour of the
whole kernel

● Locally "undefined" behaviour: where code still operates correctly even with
potentially random data, data races are tolerated (truly "benign" data races)

● Mark such data races with "data_race(.. data-racy expression ..)"
○ Helps tooling understand they are intentional
○ Document intent

For more guidance, see access-marking.txt

26

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

Linux-Kernel Data-Race Detection

27

Dynamic Analysis

source files
/

binary files

Runtime Libraries

Executable

runtime
checksInstrumentation

(compiler-inserted, binary rewriting)

🎥 Dmitry Vyukov, "Dynamic Program Analysis for Fun and Profit", LF Webinar 2021 28

https://www.linuxfoundation.org/webinars/dynamic-program-analysis-for-fun-and-profit

Past Attempts at Kernel Data-Race Detectors

Kernel Thread Sanitizer (KTSAN): google.github.io/kernel-sanitizers/KTSAN.html
● Compiler-instrumentation based (-fsanitize=thread)
● Runtime: Same algorithm as user space ThreadSanitizer (TSan v2)

○ Happens-before race detector (vector clocks)
● Pros: few false negatives, precise, detects memory ordering issues (missing

memory barriers etc.)
● Cons: scalability, memory overhead, false positives without annotating all

synchronization primitives

29

https://google.github.io/kernel-sanitizers/KTSAN.html

Past Attempts at Kernel Data-Race Detectors

int x;

…

x = 42;

…

… = x;

int x;

…

__tsan_write4(&x);

x = 42;

…

__tsan_read4(&x);

… = x;

-fsanitize=thread

30

Past Attempts at Kernel Data-Race Detectors

Watchpoint-based race detection:
● RaceHound: github.com/kmrov/racehound
● DataCollider: John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.

"Effective Data-Race Detection for the Kernel", OSDI 2010

● Basic Idea:
○ set HW watchpoint + delay
○ if breakpoint triggered ⇒ race!
○ if value changed ⇒ race!

Why did they never make it into the mainline Linux kernel?
31

https://github.com/kmrov/racehound
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf

Unique Linux-Kernel Requirements
Kernel Concurrency Sanitizer

(KCSAN)

✔

✔

✔

✔

✔

✔

Requirement
RaceHound DataCollider Kernel Thread Sanitizer

(KTSAN)

Runtime performance ✔ ✔

Low memory overhead ✔ ✘

Prefer false negatives over
false positives ✔ ✘

Maintenance: unintrusive to
rest of kernel ✔ ✘

Scalable memory access
instrumentation ✘ ✔ ✔

Language-level access aware
(LKMM-compatibility) ✘ ✔

32

The Kernel Concurrency Sanitizer (KCSAN)

● Compiler-instrumentation based dynamic race detector
● Detects "data races" by default (more with special assertions, discussed later)
● Available since Linux 5.8
● Notable improvements (and relevant release):

○ Distinguishing read-modify-write accesses (5.10)
○ Show value changes (5.14)
○ More filtering data races (5.15)
○ Detection of data races due to missing memory barriers (5.17)

33

The Kernel Concurrency Sanitizer (KCSAN)

Basic idea: Observe that 2 accesses happen concurrently
Which accesses: Let compiler instrument memory accesses

int x;

…

x = 42;

…

… = x;

int x;

…

__tsan_write4(&x);

x = 42;

…

__tsan_read4(&x);

… = x;

-fsanitize=thread

34

The Kernel Concurrency Sanitizer (KCSAN)

● Catch races using "soft" watchpoints:
– Set watchpoint, and stall access
– If watchpoint already exists ⇒ race!
– If value changed ⇒ race!
– Stall accesses with random delays to increase chance to observe race

■ Default: uniform between [1,80] µs for tasks, [1,20] µs for interrupts

● Sampling: periodically set up watchpoints
– Default: every ~2000 accesses (uniform random [1,4000])
– Caveat: lower probability to detect rare races

■ Offset by good stress tests, or fuzzers like syzkaller

35

https://github.com/google/syzkaller

The Kernel Concurrency Sanitizer (KCSAN)

Usage:
● Supported architectures: x86-64, arm64, s390, mips, powerp, xtensa
● Compiler requirement: Clang 11+, GCC 11+
● Build your kernel with CONFIG_KCSAN=y

○ For debugging and testing kernel
○ Not recommended for production kernels – more than 5x slowdown

● Suggested: CONFIG_KCSAN_STRICT=y (since 5.17)
○ "Strict" LKMM rules (but as of 6.4 still noisy)
○ Includes weak memory modeling (detect missing memory barriers)

36

make menuconfig

37

make menuconfig

38

make menuconfig

39

make menuconfig

40

make menuconfig

41

Booting the Kernel with KCSAN

42

Understanding KCSAN Reports

==
BUG: KCSAN: data-race in <function-1> / <function-2>

<operation> to <address> of <size> bytes by <context-1> on cpu <nr>:
 <call trace from function-1>
 ...

<optional: locks held by context-1>

<operation> to <address> of <size> bytes by <context-2> on cpu <nr>:
 <call trace from function-2>
 ...

<optional: locks held by context-2>

Reported by Kernel Concurrency Sanitizer on:
<system info>
==

access 2

lockdep info (optional)

title / summary

lockdep info (optional)

access 1

● Title: Shows which 2 functions raced
● Access information: Shows type of

operation (read, write, read-write, and
if marked), address, size, which task
(or interrupt), and on which cpu

● Optional: Shows lockdep info if
compiled with:

○ CONFIG_PROVE_LOCKING=y
○ CONFIG_KCSAN_VERBOSE=y

43

Severity of Data Races
Often the existence of a data race is merely a symptom of a bigger issue!

Data race may point out the following concurrency bugs:

A. Race-condition bugs where the resulting error manifests as a data race, followed by eventual
system failure. Simply marking the accesses does not fix the problem. The fix requires more
invasive changes to program logic (for example adding required locking).

B. Miscompilation may introduce bugs that can lead to system failure. The fix requires using
appropriate marked atomic accesses. Requires no fundamental changes in program logic to fix.

C. Miscompilation may introduce tolerated inaccuracies ("benign data race"), but does not lead to
system failure. Typically approximate diagnostics. Marking with data_race(..) is sufficient.

Important: Avoid hiding bugs of type (A) by blindly marking data races!
44

Beyond Data Races

45

Concurrency Bugs That Are Not Data Races

Thread 0

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

46

Concurrency Bugs That Are Not Data Races

Thread 0 Thread 1

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

47

Concurrency Bugs That Are Not Data Races

Thread 0 Thread 1 Thread 2

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

/* Bug! */

WRITE_ONCE(shared_foo, 42);

48

Concurrency Bugs That Are Not Data Races

Thread 0 Thread 1 Thread 2

spin_lock(&update_foo_lock);

/* No other writers to shared_foo. */

ASSERT_EXCLUSIVE_WRITER(shared_foo);

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

/* Bug! */

WRITE_ONCE(shared_foo, 42);

49

Detecting More Concurrency Bugs

ASSERT_EXCLUSIVE family of macros:
● Specify properties of concurrent code, where bugs are not normal data races
● Reported as: BUG: KCSAN: assert: race in <func1> / <func2>

concurrent writes concurrent reads

ASSERT_EXCLUSIVE_WRITER(var)
ASSERT_EXCLUSIVE_WRITER_SCOPED(var) ✘ ✔

ASSERT_EXCLUSIVE_ACCESS(var)
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) ✘ ✘

ASSERT_EXCLUSIVE_BITS(var, mask) ~mask✔ mask✘ ✔

50

Concurrency Testing Best Practices

1. Design test cases to cover both expected and unexpected interleavings
2. Ensure to include test cases that cover different concurrency aspects of the code
3. Ensure to include test cases that mimic real-world scenarios
4. Stress test with a high number of threads that simulates worst case scenarios
5. Design test cases that quickly execute to-be-tested code repeatedly

🎥 Andrey Konovalov, "Fuzzing the Linux Kernel", LF Webinar 2021

🎥 Brendan Higgins, "KUnit Testing Strategies", LF Webinar 2021

51

https://www.linuxfoundation.org/webinars/fuzzing-linux-kernel
https://www.linuxfoundation.org/webinars/kunit-testing-strategies

Summary

52

Summary

● Concurrency in the Linux kernel is challenging
● The LKMM provides the foundation for writing concurrent code in the kernel
● Use KCSAN to help detect concurrency bugs early, and avoid data races

Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexander Potapenko, Kostya
Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa, Peter Zijlstra, Will Deacon, Daniel Lustig, Boqun
Feng, Joel Fernandes, Jade Alglave, and Luc Maranget. "Concurrency bugs should fear the big bad
data-race detector." Linux Weekly News (LWN), 2020. URL: https://lwn.net/Articles/816850/

Kernel Documentation: docs.kernel.org/dev-tools/kcsan.html

53

https://lwn.net/Articles/816850/
https://docs.kernel.org/dev-tools/kcsan.html

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

54

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

