
1

Video Codecs and the Virtual 
Stateless Decoder Driver (visl)

Daniel Almeida
Consultant Software Engineer, Collabora
daniel.almeida@collabora.com



2

But first, who am I?



3

Who am I?
● Was a LKMP mentee, joined Collabora in 2021
● I mostly straddle the line between GStreamer and the kernel
● Most of my contributions are multimedia related
● Recently, I have been working on video codecs in Rust full-

time
● I also have experience with other codec APIs, like VA-API



4

Let’s get started :)



5

What are video codecs?



6

Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time



7

Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time
● Video signals are full of exploitable redundancies



8

Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time
● Video signals are full of exploitable redundancies
● Video codecs compress/decompress raw video by 

capitalizing on this



9

Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time
● Video signals are full of exploitable redundancies
● Video codecs compress/decompress raw video by 

capitalizing on this
● Most of the time, this process is lossy, i.e. not perfectly 

reversible



10

Video codecs explained (really quickly)
● The objective is to arrive at a passable approximation
● For a given bitrate and power envelope.



11

Video codecs explained (really quickly)
● The objective is to arrive at a passable approximation
● For a given bitrate and power envelope
● The name codec comes from encoder/decoder
● Usually only decoding is standardized on a specification
● Encoders are free to innovate, so long as it decodes



12

What are these redundancies?



13

Compression techniques
● Spatial: pixels close in location tend to be similar
● Temporal: adjacent frames tend to be similar
● Chroma subsampling: eyes more sensitive to luma
● Quantization
● Entropy coding
● AI?



14

Can we make this faster?



15

Hardware accelerators
● Tend to be faster
● More power efficient
● Free up the main CPU
● Less flexible (only a subset of the codec, usually)
● Need driver support and an API to communicate 



16

We use APIs to communicate 
with the underlying driver and 
hardware accelerator



17

Video Codec APIs



18

(Some) Video Codec APIs
● DXVA (DirectX Video Acceleration: Windows, Xbox)
● VA-API (created by Intel, primarily for Unix-like systems)
● NVENC/NVDEC (NVIDIA GPUs)
● Vulkan Video (well, Vulkan, for video codecs)
● V4L2 (Video4Linux2)
● ...and so on.



19

Why so many?
● Some Video Codec APIs are more suitable for some platforms 

than others.
● Some are vendor-specific (NVENC/DEC, for example)
● Some abstract over video codec hardware found within GPUs 

(e.g.: VA-API, NVENC/DEC)
● Some focus on video codec hardware embedded within SoCs



20

How is the kernel related to 
this?



21

Video Codec Drivers
● Some APIs employ a user space driver: e.g.: VA-API

– Client program uses an API to talk to user space driver
– Driver builds a set of command buffers and send these to 

the kernel
– Kernel takes care of submitting to the GPU



22

Video Codec Drivers
● Some APIs employ a kernel space driver: e.g.: V4L2

– Client program uses API to talk to the kernel
– Kernel takes care of programming the hardware
– This API is known as a uAPI, i.e. user space API



23

This talk is about the V4L2 
Codec APIs and the visl driver



24

V4L2 is a framework/API for 
various multimedia devices



25

This includes video codecs (as 
of somewhat recently)



26

Inside a codec 
bitstream



27

Inside the bitstream
● Metadata

– Controls the decoding process
– May persist between frames or relate to a single frame
– e.g.: VPS/SPS/PPS/Frame headers, etc

● Slice and/or Tile data
– Actual compressed data



28

V4L2 Video Codec API types
● Stateful

– Hardware parses bitstream itself
– Keeps track of bitstream metadata (stateful)

● Stateless
– Client program parses bitstream (in software)
– Uses bitstream metadata to program hardware



29

Stateless hardware tend to be 
simpler, but it needs more 
software to drive it



30

Codec uAPI
● Stateless APIs also need to provide a way to send bitstream 

metadata to the kernel together with the bitstream itself
● This metadata is extracted when parsing the stream in 

software.
● The API to pass the codec-specific bitstream metadata is 

known as the codec uAPI (e.g.: the VP9 uAPI, the AV1 uAPI)



31

Codec uAPIs
● Collabora has been steadily merging support for the major 

codecs in industry 



32

Codec uAPIs
● This includes:

– H.264/AVC (proprietary)
– H.265/HEVC (proprietary)
– VP9 (open, royalty-free)
– AV1 (open, royalty-free, state-of-the-art)



33

Let’s recap what we know so far



34

Recap
● A video codec compresses and decompresses video, we 

need this to make video data tractable
● Video codecs benefit from hardware acceleration
● We use APIs to talk to the accelerator
● This presentation is specifically about the V4L2 codec APIs 

and the visl driver



35

Recap
● V4L2 APIs come in Stateful and Stateless flavors
● For the stateful API, we only send the bitstream through 

V4L2, the hardware does the rest.
● For the stateless API, we must also send the bitstream 

metadata through the so-called codec uAPI
● Collabora has been merging these uAPIs into the Linux kernel, 

some of the codecs are proprietary, some are Open Source



36

What is visl?



37

visl
● A virtual stateless decoder driver
● It does not drive a real accelerator
● Userspace can talk to it through the codec uAPIs we have 

discussed 
● Implements a decode loop like any other codec driver



38

Decode loop



39

Codec uAPIs supported by visl
● Vp8
● Vp9
● Mpeg2
● FWHT
● H.264/AVC
● H.265/HEVC



40

What is traced by visl
● State of the queues
● State of the decoded picture buffer (DPB)
● The bitstream metadata (submitted through V4L2 controls)
● The slice/tile data submitted in the OUTPUT buffers
● Note: other APIs have similar tracing mechanisms: e.g.: VA_TRACE



41

Why should we bother with a 
virtual driver?



42

visl as a development aid
● Helps test your userspace code even if you do not have the 

hardware
● Helps you prototype new codec uAPIs 
● You can run a working userspace implementation against visl 

to trace it
● You can then use the traces to develop the code for another 

userspace application



43

How is visl different from a real driver?
● Real drivers will use the metadata transmitted through the 

codec uAPI to program the underlying device
● visl uses the metadata to program the v4l2 test pattern 

generator instead 
● visl also uses the metadata to dump it through various means
● Most importantly: visl does not decode video at all



44

How is visl different from vicodec?
● vicodec is another driver entirely
● vicodec can actually encode and decode video 
● It uses its own video coding standard, FWHT
● FWHT is an “academic” codec, not used in industry
● vicodec also has stateful support



45

If you understand visl...



46

...you understand how codec 
drivers work!



47

Example of real codec drivers
● rkvdec (Rockchip video engine) 

drivers/staging/media/rkvdec

● Hantro (video IP from Verisillicon, present in a number of 
SoCs) 

drivers/media/platform/verisilicon/

● Cedrus (reverse-engineered from Allwinner SoCs)

drivers/staging/media/sunxi



48

How do I run visl?



49

How do I run visl?
● Install a new-ish version of Gstreamer (1.18, 2020)
● Modprobe visl
● Run any pipeline using a v4l2 stateless decoder element, e.g.:

– gst-launch-1.0 filesrc location=<some video file> ! parsebin ! 

v4l2slh264dec ! filesink location=<some output file>



50

What should I expect?
● GStreamer will start “playing” your file
● Its filesink element will write the “decoded” data into a file
● You can inspect this file with, e.g.: YUView to access the 

frames generated by visl
● The frames will contain a lot of debug and tracing information
● You can use ftrace as well



51

Don’t forget to play with the 
different options when loading 
the module



52

Ok, and finally, why should you 
care?



53

The exciting world of codecs
● Cisco: by 2022, 82% of all consumer internet traffic will be 

video data
● Improving the Linux multimedia stack makes the OS more 

appealing as a whole
● It is intellectually challenging and rewarding
● V4L2 can use more contributors that can grow into 

maintainers in the future



54

Thank you!



55

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

