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But first, who am I?
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Who am I?
● Was a LKMP mentee, joined Collabora in 2021
● I mostly straddle the line between GStreamer and the kernel
● Most of my contributions are multimedia related
● Recently, I have been working on video codecs in Rust full-

time
● I also have experience with other codec APIs, like VA-API
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Let’s get started :)
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What are video codecs?
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Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time
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Video codecs explained (really quickly)
● Raw video data is simply unfeasible most of the time
● Video signals are full of exploitable redundancies
● Video codecs compress/decompress raw video by 

capitalizing on this
● Most of the time, this process is lossy, i.e. not perfectly 

reversible
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Video codecs explained (really quickly)
● The objective is to arrive at a passable approximation
● For a given bitrate and power envelope.



11

Video codecs explained (really quickly)
● The objective is to arrive at a passable approximation
● For a given bitrate and power envelope
● The name codec comes from encoder/decoder
● Usually only decoding is standardized on a specification
● Encoders are free to innovate, so long as it decodes
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What are these redundancies?
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Compression techniques
● Spatial: pixels close in location tend to be similar
● Temporal: adjacent frames tend to be similar
● Chroma subsampling: eyes more sensitive to luma
● Quantization
● Entropy coding
● AI?
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Can we make this faster?
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Hardware accelerators
● Tend to be faster
● More power efficient
● Free up the main CPU
● Less flexible (only a subset of the codec, usually)
● Need driver support and an API to communicate 
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We use APIs to communicate 
with the underlying driver and 
hardware accelerator
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Video Codec APIs
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(Some) Video Codec APIs
● DXVA (DirectX Video Acceleration: Windows, Xbox)
● VA-API (created by Intel, primarily for Unix-like systems)
● NVENC/NVDEC (NVIDIA GPUs)
● Vulkan Video (well, Vulkan, for video codecs)
● V4L2 (Video4Linux2)
● ...and so on.
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Why so many?
● Some Video Codec APIs are more suitable for some platforms 

than others.
● Some are vendor-specific (NVENC/DEC, for example)
● Some abstract over video codec hardware found within GPUs 

(e.g.: VA-API, NVENC/DEC)
● Some focus on video codec hardware embedded within SoCs
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How is the kernel related to 
this?
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Video Codec Drivers
● Some APIs employ a user space driver: e.g.: VA-API

– Client program uses an API to talk to user space driver
– Driver builds a set of command buffers and send these to 

the kernel
– Kernel takes care of submitting to the GPU
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Video Codec Drivers
● Some APIs employ a kernel space driver: e.g.: V4L2

– Client program uses API to talk to the kernel
– Kernel takes care of programming the hardware
– This API is known as a uAPI, i.e. user space API
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This talk is about the V4L2 
Codec APIs and the visl driver
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V4L2 is a framework/API for 
various multimedia devices
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This includes video codecs (as 
of somewhat recently)
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Inside a codec 
bitstream
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Inside the bitstream
● Metadata

– Controls the decoding process
– May persist between frames or relate to a single frame
– e.g.: VPS/SPS/PPS/Frame headers, etc

● Slice and/or Tile data
– Actual compressed data
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V4L2 Video Codec API types
● Stateful

– Hardware parses bitstream itself
– Keeps track of bitstream metadata (stateful)

● Stateless
– Client program parses bitstream (in software)
– Uses bitstream metadata to program hardware
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Stateless hardware tend to be 
simpler, but it needs more 
software to drive it
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Codec uAPI
● Stateless APIs also need to provide a way to send bitstream 

metadata to the kernel together with the bitstream itself
● This metadata is extracted when parsing the stream in 

software.
● The API to pass the codec-specific bitstream metadata is 

known as the codec uAPI (e.g.: the VP9 uAPI, the AV1 uAPI)
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Codec uAPIs
● Collabora has been steadily merging support for the major 

codecs in industry 
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Codec uAPIs
● This includes:

– H.264/AVC (proprietary)
– H.265/HEVC (proprietary)
– VP9 (open, royalty-free)
– AV1 (open, royalty-free, state-of-the-art)
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Let’s recap what we know so far
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Recap
● A video codec compresses and decompresses video, we 

need this to make video data tractable
● Video codecs benefit from hardware acceleration
● We use APIs to talk to the accelerator
● This presentation is specifically about the V4L2 codec APIs 

and the visl driver



35

Recap
● V4L2 APIs come in Stateful and Stateless flavors
● For the stateful API, we only send the bitstream through 

V4L2, the hardware does the rest.
● For the stateless API, we must also send the bitstream 

metadata through the so-called codec uAPI
● Collabora has been merging these uAPIs into the Linux kernel, 

some of the codecs are proprietary, some are Open Source
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What is visl?
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visl
● A virtual stateless decoder driver
● It does not drive a real accelerator
● Userspace can talk to it through the codec uAPIs we have 

discussed 
● Implements a decode loop like any other codec driver
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Decode loop
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Codec uAPIs supported by visl
● Vp8
● Vp9
● Mpeg2
● FWHT
● H.264/AVC
● H.265/HEVC
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What is traced by visl
● State of the queues
● State of the decoded picture buffer (DPB)
● The bitstream metadata (submitted through V4L2 controls)
● The slice/tile data submitted in the OUTPUT buffers
● Note: other APIs have similar tracing mechanisms: e.g.: VA_TRACE



41

Why should we bother with a 
virtual driver?
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visl as a development aid
● Helps test your userspace code even if you do not have the 

hardware
● Helps you prototype new codec uAPIs 
● You can run a working userspace implementation against visl 

to trace it
● You can then use the traces to develop the code for another 

userspace application
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How is visl different from a real driver?
● Real drivers will use the metadata transmitted through the 

codec uAPI to program the underlying device
● visl uses the metadata to program the v4l2 test pattern 

generator instead 
● visl also uses the metadata to dump it through various means
● Most importantly: visl does not decode video at all
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How is visl different from vicodec?
● vicodec is another driver entirely
● vicodec can actually encode and decode video 
● It uses its own video coding standard, FWHT
● FWHT is an “academic” codec, not used in industry
● vicodec also has stateful support
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If you understand visl...
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...you understand how codec 
drivers work!
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Example of real codec drivers
● rkvdec (Rockchip video engine) 

drivers/staging/media/rkvdec

● Hantro (video IP from Verisillicon, present in a number of 
SoCs) 

drivers/media/platform/verisilicon/

● Cedrus (reverse-engineered from Allwinner SoCs)

drivers/staging/media/sunxi
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How do I run visl?
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How do I run visl?
● Install a new-ish version of Gstreamer (1.18, 2020)
● Modprobe visl
● Run any pipeline using a v4l2 stateless decoder element, e.g.:

– gst-launch-1.0 filesrc location=<some video file> ! parsebin ! 

v4l2slh264dec ! filesink location=<some output file>
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What should I expect?
● GStreamer will start “playing” your file
● Its filesink element will write the “decoded” data into a file
● You can inspect this file with, e.g.: YUView to access the 

frames generated by visl
● The frames will contain a lot of debug and tracing information
● You can use ftrace as well
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Don’t forget to play with the 
different options when loading 
the module
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Ok, and finally, why should you 
care?
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The exciting world of codecs
● Cisco: by 2022, 82% of all consumer internet traffic will be 

video data
● Improving the Linux multimedia stack makes the OS more 

appealing as a whole
● It is intellectually challenging and rewarding
● V4L2 can use more contributors that can grow into 

maintainers in the future
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Thank you!
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We are hiring
col.la/careers

http://col.la/careers
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