

ALSA: Writing the
soundcard driver

Ivan Orlov, SW Engineer, Codethink

Why does this talk exist:
- There are not many talks covering the details of the sound drivers development yet
- Some aspects of the subsystem are poorly documented
- Bring more talents in it!

Approximate plan:
- Basic structure of ALSA
- Structure of a sound card driver: components (PCM, Controls, Timers), their initialization and use
- What are PCM devices, their role in the sound subsystem
- Basic terms: what do you need to know to understand the sound code
- What happens in the ALSA middle layer when you want to capture or play some sound
- XRUNs: our enemies N1
- Debugging approaches
- A few words about Virtual PCM Driver and why developing virtual drivers is important

Userspace application (e.g. aplay/arecord)

ALSA userspace libraryUser space

Kernel space

ALSA middle layer

Device driver

Hardware

ioctl

<callbacks>

ALSA (Advanced Linux Sound Architecture)

Userspace application (e.g. aplay/arecord)

ALSA userspace libraryUser space

Kernel space

ALSA middle layer

Device driver

Hardware

ioctl

<callbacks>Talk

ALSA (Advanced Linux Sound Architecture)

Soundcard driver structure
struct: snd_card

We could “split” the sound card into a set of components:
- Controls (volume, distortion, mixer controls, …)
- PCM
- Timers
- MIDI
- … (we can define our own components)

PCM

Timer

Controls

MIDI bus

Sound card

…

Underlying interface
(PCI, USB, …)

How to initialize the soundcard?
In probe:

snd[_devm]_card_new(&parent_dev, index, id, THIS_MODULE,
sizeof(chip-specific struct), &chip_specific_struct);

strcpy(card->driver, "My Chip");
strcpy(card->shortname, "My Own Chip 123");
sprintf(card->longname, "%s at 0x%lx irq %i", card->shortname, chip->port,
chip->irq);
…
<initialize the components of the card>
…
snd_card_register(card);

=> New entry in
/proc/asound/

How to view sound cards in your system?
$ aplay -l
…
$ arecord -l
…
$ cat /proc/asound/cards

 0 [sofhdadsp]: sof-hda-dsp - sof-hda-dsp
 …
 1 [<card id>]: <Driver name> - <Short name>
 <Long name>
 3 [Loopback]: Loopback - Loopback
 Loopback 1

Soundcard
components

PCM (Pulse Code Modulation) devices

PCM 0x00, 0x0A,
0x0B, …

ADC, DAC, …

PCM. Sampling
- When playback, consumes volume values (samples)
- When capture, produces volume values (samples)

The amount of samples consumed or produced per second is
called rate (Hz).
Frame - group of samples for each channel at one moment of
time.

The higher rate => the higher resolution
Rate = 8000 (8kHz) => 8000 measurements per second

Frame (4 bytes)

Sample (2 byte) Sample (2 byte)

Periods and buffers
HW Buffer (DMA) contains frames which are processed by hardware.
SW Buffer (Userspace memory) contains frames processed by userspace
application. To make the data transfer fast we copy the data from one buffer
to another by small chunks (periods). Every time the hardware processes a
period it notifies the ALSA middle layer.

Buffer

Hardware
(DMA)

Software
(userspace)

Buffer

Period Period Period Period

Frame Frame

Sample Sample Sample Sample

Samples format
Describes the format of volume sample. Examples:

- SND_PCM_FORMAT_S16_LE
- SND_PCM_FORMAT_U8
- …

Type in the kernel: snd_pcm_format_t

Quality of sound depends on the format as well!

Access mode
snd_pcm_access_t
The order of samples in the hardware buffer supported by hardware.

INTERLEAVED

NON-INTERLEAVED

COMPLEX

S1 S2 S1 S2 …

S1 S1 … S2 S2

?? ?? ?? ?? …

mmaped / non-mmaped

PCM & Substreams
Struct name: snd_pcm

- Can have multiple substreams (subdevices)
- Has callbacks for different events

Substreams are streams which could be mixed
together by the hardware(so you can play/capture
multiple streams simultaneously), but it has very
small use nowadays (usually you will find only 1
substream for play and 1 for capture).

Substreams have a direction (playback/capture)

Struct name: snd_pcm_substream

PCM

Substream
#0 capture

Substream
#1 capture

Substream
#2 playback

…

Sound card

PCM#0 PCM1 …

How to initialize the PCM?
snd_pcm_new(card, “ID string”, id, PLAYBACK_CNT, CAPTURE_CNT, &pcm);

View PCMs in your system
● aplay -l / arecord -l
● cat /proc/asound/pcm
● ls /proc/asound/card0/pcm*

PCM runtime
Struct: snd_pcm_runtime

When we open the PCM device for capture/playback, the PCM
layer:
1) Checks if we have a free substream on the PCM device.

If we don’t, returns an error
2) Takes the free substream, creates the snd_pcm_runtime

struct and assigns it to the substream.

Runtime struct stores the information about particular
capture/playback process: buffer pointers, configuration,
spinlocks, …

PCM

Substream
#0

Substream
#1

…

Runtime #1
DMA Addr,
HW params,
SW params,
Status
…

Free

Application <-> Sound hardware

DMA Buffer

snd_pcm_update_hw_ptr

hw pointer__snd_pcm_lib_xfer
Userspace

buffer

Period elapsed? IRQ!

Circular HW buffer

(Example) Reading process
ALSA middle layer Soundcard driver

When the application calls ‘readi’, alsa layer:
1) ALSA userspace lib calls the

SNDRV_PCM_IOCTL_READI_FRAMES
ioctl

2) It goes to the __snd_pcm_lib_xfer function,
passes the amount of bytes to read

3) Checks the available frames count, reads
the available frames

4) If there is no available frames, sleeps until
they are available (if non-blocking flag isn’t
set)

5) Copies the data from the DMA buffer to the
userspace buffer, updates the appl_ptr

Every time we have a period-elapsed IRQ, our
driver calls the snd_pcm_period_elapsed function,
which triggers the ALSA layer to call the ‘pointer’
callback of the driver and update the hw_ptr
variable.

hw_ptr & appl_ptr

hw_ptr

appl_ptr

Capture

hw_ptr

appl_ptr

Playback

snd_pcm_update_hw_ptr

__snd_pcm_lib_xfer

available frames

XRUN
XRUN

Overrun
- Capture process
- Application doesn’t read from the hardware

buffer frequently enough and it gets
overwritten (as it is circular)

Underrun
- Playback process
- Application doesn’t write data frequently

enough and the PCM starts starving for new
data

hw_ptr & appl_ptr

hw_ptr

appl_ptr

Capture

hw_ptr

appl_ptr

Playback
> buf_size? Overrun!

< stop_threshold? Underrun!

How exactly the ALSA middle layer communicates
with a PCM?

How exactly the ALSA middle layer communicates
with a PCM?
Callbacks

snd_pcm_set_ops(pcm,
SNDRV_PCM_STREAM_PLAYBACK,
&ops);

PCM callbacks
Application (e.g. aplay)

Struct: snd_pcm_ops

PCM has a variety of callbacks to communicate
with the “upper” layers. There are some standard
implementations of the callbacks, so usually we
have to define only part of them when writing our
driver:

- open
- close
- pointer
- hw_params
- trigger
- prepare

User space

Kernel space ALSA

PCM Driver

Open substream

open(substream, runtime)

Set HW params

hw_params(parameters) pointer

ALSA userspace lib

ioctls

PCM callbacks. ‘Open’ callback
Is called when the substream is opened for capture/playback.

Prototype: int (*open)(struct snd_pcm_substream *substream);
Non-atomic

Purpose: Set runtime’s hardware description*, private data allocation, setting up
the constraints.

* struct snd_pcm_hardware - contains accepted rates, count of channels, period
counts and sizes, maximum buffer size

PCM callbacks. ‘Close’ callback
Is called when the substream is closed.

Prototype: int (*close)(struct snd_pcm_substream *substream);
Non-atomic

Purpose: Free runtime private data

‘hw_params’ and ‘hw_free’ callbacks
‘hw_params’ is called when the application sets the hardware
settings (buffer size, period size, format, …)

Prototype: int (*hw_params)(struct snd_pcm_substream
*substream, struct snd_pcm_hw_params *params);
Non-atomic and could be called multiple times!

Purpose: hardware setup, unmanaged buffer allocation

‘hw_free’ is called just before ‘close’ and allows us to free all of
the allocated resources. Could be called multiple times!

Memory allocation
Unmanaged Managed

You still have to “pre-allocate” pages:
snd_pcm_lib_preallocate_pages_for_all
(usually done at initialization, for instance in
probe)

And allocate/free pages every time in the
hw_params and hw_free callbacks

Call once:
snd_pcm_set_managed_buffer_all
during the initialization.

No need to allocate/free pages in callbacks.

PCM callbacks. ‘prepare’ callback
Is called every time snd_pcm_prepare is called (for instance, after
overruns/underruns). We can set some of the hw params here (as
rate, format, …).

Prototype: int (*prepare)(struct snd_pcm_substream *substream);

Non-atomic, can be called multiple times!

PCM callbacks. ‘trigger’ callback
Is called every time the PCM is started, stopped, paused, resumed or suspended.
Events:

- SNDRV_PCM_TRIGGER_STOP
- SNDRV_PCM_TRIGGER_START
- SNDRV_PCM_TRIGGER_PAUSE_PUSH
- SNDRV_PCM_TRIGGER_PAUSE_RELEASE
- SNDRV_PCM_TRIGGER_SUSPEND
- SNDRV_PCM_TRIGGER_RESUME
- SNDRV_PCM_TRIGGER_DRAIN

Prototype: int (*trigger)(struct snd_pcm_substream *substream,
 int cmd);
Atomic!

PCM callbacks. ‘pointer’ callback
This callback is used by PCM core to get the hardware buffer
pointer. Returns value in frames!

Prototype: snd_pcm_uframes_t (*pointer)(struct
snd_pcm_substream *substream)

Atomic

(Usually we read the hardware register here)

PCM callbacks. ‘ioctl’ callback
Allows redefinition of some of the PCM read ioctls:

- SNDRV_PCM_IOCTL1_FIFO_SIZE
- SNDRV_PCM_IOCTL1_CHANNEL_INFO
- SNDRV_PCM_IOCTL1_RESET

Prototype: int (*ioctl)(struct snd_pcm_substream * substream,
 unsigned int cmd, void *arg);

Usually, this callback is undefined as the ALSA middle layer
provides the generic implementation for all of the possible ioctls

How to test the PCM?
- arecord:

$ arecord -D hw:CARD=0,DEV=0 -c 4 -i -f S16_LE -r 48000 --duration=10
out.wav

- aplay:
$ aplay -D hw:CARD=0,DEV=0 -c 4 -f S16_LE -r 48000 src.wav

Both of them support different formats, rates, channel count and access modes.
For recording/playing non-interleaved sound:

- $ arecord -D hw:CARD=0,DEV=0 -c 4 -i -f S16_LE -r 48000 -I --duration=10
out.wav

Questions?

Controls
struct: snd_kcontrol_new
Controls are abstractions for control elements of the soundcard.
Types:

- Integer (min, max, and step could be set)
- Switch (boolean)
- Enumeration

Controls should follow the naming convention, but it is not
obligatory, for instance:
PCM Playback Volume
<Source> <Direction> <Function>

How to define control?
static struct snd_kcontrol_new my_control = {
 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 .name = "PCM Playback Switch",
 .index = 0,
 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
 .private_value = 0xffff,
 .info = my_control_info,
 .get = my_control_get,
 .put = my_control_put
};

snd_kcontrol *ctl = snd_ctl_new1(&my_control,
private_data)

snd_ctl_add(card, ctl);

Info callback
static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_info *uinfo)
{
 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 uinfo->count = 1;
 uinfo->value.integer.min = 0;
 uinfo->value.integer.max = 1;
 return 0;
}

static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_info *uinfo)
{
 static char *texts[4] = {
 "First", "Second", "Third", "Fourth"
 };
 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
 uinfo->count = 1;
 uinfo->value.enumerated.items = 4;
 if (uinfo->value.enumerated.item > 3)
 uinfo->value.enumerated.item = 3;
 strcpy(uinfo->value.enumerated.name,
 texts[uinfo->value.enumerated.item]);
 return 0;
}

Get callback
static int snd_myctl_get(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *ucontrol)
{
 struct mychip *chip = snd_kcontrol_chip(kcontrol);
 ucontrol->value.integer.value[0] = get_some_value(chip);
 return 0;
}

static int snd_myctl_get_enumerated(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *ucontrol)
{
 struct mychip *chip = snd_kcontrol_chip(kcontrol);
 ucontrol->value.enumerated.item[0] = get_some_value(chip);
 return 0;
}

Put callback
static int snd_myctl_put(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *ucontrol)
{
 struct mychip *chip = snd_kcontrol_chip(kcontrol);
 int changed = 0;
 if (chip->current_value !=
 ucontrol->value.integer.value[0]) {
 change_current_value(chip,
 ucontrol->value.integer.value[0]);
 changed = 1;
 }
 return changed;
}

Input validation goes here as well.

How to view and manipulate controls?
- Console interface: amixer

Show all controls: amixer -c <card_number> controls
Show all controls with values: amixer -c <card_number> contents

- Pseudo-graphical interface: alsamixer
Show controls for particular card: alsamixer -c 0

ALSA Timers
ALSA supports exporting the hardware timer interface, so other kernel
modules and the userspace applications could bind to them!

struct: snd_timer

To view available timers on your system:

$ cat /proc/asound/timers

ALSA creates a timer instance for every PCM substream, and
triggers it when snd_pcm_period_elapsed is called.

How to define a timer?
static struct snd_timer_hardware some_sample_timer_hw = {
 .flags = SNDRV_TIMER_HW_AUTO,
 .resolution = <resolution in nsec>,
 .ticks = <max ticks count which could be set>,
 .start = timer_start_callback,
 .stop = timer_stop_callback,
};
…
struct snd_timer_id tid;
tid.dev_class = SNDRV_TIMER_CLASS_CARD;
tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
tid.card = chip->card->number;
tid.device = device;
tid.subdevice = 0;

snd_timer_new(card, "Timer name", &tid, &timer);
timer->hw = some_sample_timer_hw;

Timer will appear in:
/proc/asound/timers

Example: sound/core/hrtimer.c

Timers callbacks. timer_start

Prototype: int (*stop) (struct snd_timer *timer);
Is called when the timer instance is stopped.

Timers callbacks. timer_stop

Prototype: int (*start) (struct snd_timer *timer);

Is called when the userspace application or another kernel module starts the
timer instance.

Desired ticks value is set in ‘sticks’ field of the timer struct.

Bind to timer. Timer instance
struct: snd_timer_instance

If we want to bind to the timer, we have to create a timer instance and define a few
callbacks for it.

.callback - the callback which will be called after count of ticks we set.

.ccallback - the callback, which is called with every event happened with the timer

After that, we will be able to start the timer with snd_timer_start function.

Example: sound/drivers/aloop.c

Debugging the sound-related issues
- Tracing (ftrace/strace)
- xrun_debug

Debugging the sound-related issues
- Tracing (ftrace/strace)
- xrun_debug

snd_printk!

Tracing
$ trace-cmd record -l snd_* -p function_graph
…
$ trace-cmd report

CONFIG_FTRACE
CONFIG_DYNAMIC_FTRACE

When it could be useful: Timing issues, XRUNs

$ strace aplay …

When it could be useful: Device errors, failed alsa-lib ioctls

xrun_debug
CONFIG_SND_PCM_XRUN_DEBUG
CONFIG_SND_VERBOSE_PROCFS
CONFIG_SND_DEBUG

1 Basic debugging - show xruns in ksyslog interface
2 Dump stack - dump stack for basic debugging
4 Jiffies check - compare the position with kernel jiffies (a sort of in-kernel
monotonic clock), show what's changed when basic debugging is enabled
8 Dump positions on each period update call
16 Dump positions on each hardware pointer update call
32 Enable logging of last 10 ring buffer positions
64 Show the last 10 ring buffer position only once (when first error situation
occured)

https://www.alsa-project.org/wiki/XRUN_Debug

$ echo 3 > /proc/asound/card0/pcm0c/xrun_debug

ALSA selftests
- Help to detect timing issues on different frame rates, buffer and period sizes
- Can test mixer controls as well

snd-aloop driver
- Creates a pair of software loopback PCM devices
- Can be used as a sample device when investigating the timing issues

snd_printk and friends
snd_printk, pcm_dbg, pcm_err, pcm_warn, …

$ dmesg -n 8

CONFIG_SND_DEBUG

When to use: ALWAYS

Virtual PCM driver (snd-pcmtest)
Why?

- We need to cover the ALSA layer with tests (more tests less bugs!)

What can it do?

- Sample virtual sound driver (less complicated than snd-aloop)
- Can generate template-based or random capturing data which could be validated from the

userspace
- Can check the playback data for containing the expected pattern
- Can inject errors and delays into the PCM callbacks and capture/playback processes to test

the userspace application behavior

Documentation: https://docs.kernel.org/sound/cards/pcmtest.html
Tests: tools/testing/selftests/alsa/test-pcmtest-driver.c

https://docs.kernel.org/sound/cards/pcmtest.html

Useful resources
- Writing an ALSA driver: https://docs.kernel.org/sound/kernel-api/writing-an-alsa-driver.html
- Introduction to sound programming with ALSA: https://www.linuxjournal.com/article/6735
- Sources of the snd-aloop and snd-pcmtest drivers
- ALSA sources

Sources for
the webinar

https://docs.kernel.org/sound/kernel-api/writing-an-alsa-driver.html
https://www.linuxjournal.com/article/6735
https://github.com/ivanorlov2206/writing-the-soundcard-driver/tree/main
https://github.com/ivanorlov2206/writing-the-soundcard-driver/tree/main

Thank you for your attention! Questions?

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

