
The Evolution of
Zero-Trust with
Workload-Level
Identity

Márton Sereg
Senior Product Manager

As a PM, Marton is working on a Kernel space solution for zero trust
networking. With a robust software engineering background, he
formerly contributed to Outshift’s R&D, primarily focusing on service
meshes and server-side WebAssembly. A passionate advocate for
open source, Marton's journey before joining Cisco includes pivotal
work at a startup, where he was instrumental in launching several
notable open source projects in the cloud-native space. Among these,
"logging-operator" and "bank-vaults" stand out, both on track to
become CNCF sandbox projects.

Nándor Krácser
Engineering Lead

Nandor is an experienced software expert, specializing in security and
network engineering. At Banzai Cloud, Nandor's efforts were key in
advancing many open-source projects, most notably the acclaimed
Bank-Vaults project, which simplified the secret management of
Kubernetes-based applications. Following Banzai's integration into
Cisco, Nandor is now focused on crafting a zero-trust solution,
incorporating extensive WebAssembly elements, designed to secure
applications operating on any level above the Linux kernel.

Lateral movements in practice
A simplified example of how a security breach happens

Attack narrative

1. Phishing attack - AWS credentials are stolen

2. The attacker starts a VM inside a security group

3. Scanning of the internal network

4. Exploiting trust relations – access user management API

5. Data Exfiltration – retrieving internal user info

Threats are evolving

60%
7 months

4%

before breaches are identified and contained

of security breaches contain lateral movements

of alerts are even investigated properly

1. Employee awareness against phishing

2. Principle of least privilege for credentials

3. Do sophisticated network segmentation

4. Set up fine-grained network policies

5. Use authentication for internal services

6. Active monitoring of anomalies

What could we do to prevent the breach?

Everyone can be a victim…

Someone will eventually have access…

It is just limiting the scope…

Can be extremely complex…

It’s just hard…

And it’s even harder…

Would a Zero Trust strategy solve
everything?

And really, what do we mean by Zero Trust?

What is Zero Trust?

• It’s a security principle or a strategy, not a specification, an

implementation, or even one product

• Moving from a ‘trust but verify’ to a ‘never trust, always verify’ model

• Driven by increasingly distributed and complex application- and data

architectures
• Perimeter security is becoming obsolete

• Rise in attacks involving lateral movement

• Need for granular workload access control

Areas of Zero Trust

1. Zero Trust Network Access
• Secure remote access to an organization’s applications, services, and data

• Based on clearly defined access control policies, instead of granting access to

the whole network, like a VPN

2. Microsegmentation – Workload-to-workload Zero Trust
• Granular access controls that are closer to the workload

• Abstracting the firewall function

1: Microsegmentation

1. Dividing a network into segments and applying

security controls to each

2. Network-based, reduce attack surface

3. Doesn’t encrypt traffic

4. Doesn’t work well in Kubernetes

5. Complexity in setting up policies in a changing

environment

2: Service meshes

1. Only work realistically on Kubernetes

2. Mixes responsibilities between network

and security teams

3. Inherently trust everything running in

the pod behind the sidecar

4. Comes with the proxy hell

3: Kernel-level Identity & Encryption

1. Bind identities to processes and solve

mTLS in Kernel-space

2. Works everywhere with a Linux host

3. Works natively with Kubernetes

through a connector

4. Access control and also encryption

5. Application and network agnostic

This is Camblet!
A new, open source project for automatic Kernel-space

workload identity, access control, and encryption

How does Camblet work?

The core of Camblet is in the Kernel

• The complete TLS handshake happens in Kernel space

• It’s standard TLS – compatible with other sources or destinations

• Unencrypted traffic never leaves Kernel space

• Private keys don’t need to leave Kernel space

• It gives us socket - level identity – unauthorized processes can’t

have access even if they run in the same container…

But we still need a user space component

• A Camblet agent needs to run on all nodes

• Certificate signing happens through this agent

• Metadata enrichment - the process of collecting metadata of

workloads in different environments like containers or

orchestration systems

• But Camblet is fully transparent to users (no rebuild, no restart)

Identity & access policies

• Camblet uses a simple policy configuration based on identities

• Identities are described as SPIFFE IDs

• SPIFFE IDs are present in certificates

• Identities are defined through metadata selectors

• Metadata can include environment-specific elements (like K8s

labels)

Service discovery

• On the kernel level Camblet only knows IP addresses and ports

• Service discovery “provides DNS in Kernel space”

• It defines which workloads are part of the system
• But it isn’t needed for SPIFFE IDs

• Currently, a user’s responsibility to describe the system

• Automatic connectors to existing service discovery solutions are

planned

How do I use Camblet?

Install:

• To all nodes where Camblet should work

• Installer provisions both agent and kernel modules

• curl -L camblet.io/install.sh | bash

After install:

• Write and distribute security policies

• Write and distribute service discovery files

Demo time…

Learn more
Start at camblet.io

Github: https://github.com/cisco-open/camblet

Questions?

