
The Ticking Beast
A deep dive into Timekeeper, Timers, Tick and

Tickless kernels.

(Linux Foundation webinar: Feb 22nd 2024)

Joel Fernandes (Google)

joel@joelfernandes.org

Public copy.

Who am I ?
Joel Fernandes (Google)

joel@joelfernandes.org

Agenda
● Userspace time APIs
● Clocksource

○ Time stamp counter (TSC)

● Userspace timer APIs
● Clockevents

○ Local APIC timer
○ HPET
○ Broadcast timers

● Timer wheel
● Hrtimer
● Scheduling clock interrupt (tick) and NOHZ
● VDSO (if time permits)

25 minutes

25 minutes

40 minutes

Userspace

● How do you get the current time?

○ clock_gettime() API
■ int clock_gettime(clockid_t clockid, struct timespec *tp);

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

○ Clock IDs for keep track of elapsed time.

■ CLOCK_REALTIME

■ CLOCK_MONOTONIC

■ CLOCK_BOOTIME

○ gettimeofday() directly operates on CLOCK_REALTIME.

Userspace

● Let us go over Clock IDs

○ CLOCK_REALTIME

■ affected by changes in time by user

■ NTP (adjtime).

● Used to correct time by adjusting clock rate till time is corrected.

Userspace

● Let us go over Clock IDs
○ CLOCK_MONOTONIC

■ NOT affect by changes in time by user.

■ Affected by changes in time by adjtime (NTP changes clock rate).

■ Does NOT count suspend time.

Userspace

● Let us go over Clock IDs
○ CLOCK_BOOTTIME

■ Identical to CLOCK_MONOTONIC except..

■ Accounts for suspend time.

Userspace

● Clock ID behavior summary

Clock ID name Time since Can be set by
user?

Can be set my
adjtime

Accounts suspend time?

CLOCK_REALTIME Epoch Yes Yes Yes

CLOCK_MONOTONIC Boot No Yes No

CLOCK_MONOTONIC_RAW Boot No No No

CLOCK_BOOTTIME Boot No Yes Yes

Userspace

● How do you set the time?
○ clock_settime() - set the time of the specified clock clockid.

■ int clock_settime(clockid_t clockid, const struct timespec *tp);

○ adjtime() - gradually correct the time

■ int adjtime(const struct timeval *delta, struct timeval *olddelta);

■ Clock is sped up over slow down a bit every second.

■ Typically used by NTP to adjust for clock drift.

○ settimeofday() counterpart to gettimeofday().

● How to get resolution of a clock?

 int clock_getres(clockid_t clockid, struct timespec *res);

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

Userspace

Now lets look at how timekeeping is supported in the kernel..

Buckle up :)

Kernel support - timekeeping

● How does the kernel track different clocks?
Time is accumulated here
CLOCK_MONOTONIC and
CLOCK_MONOTONIC_RAW

Offset to CLOCK_REALTIME

Offset to CLOCK_BOOTTIME

Offset to CLOCK_TAI

Kernel support - timekeeping
● Several timekeeping APIs are in VDSO.

● For instance, to get time userspace reads TSC and scales cycle delta from last read.

Kernel Support - timekeeping - Clocksource

A clocksource is an abstraction on simple clock (counter) that can be read from!

Struct clocksource

Hardware
Counter

CPU
Read

Kernel Support - timekeeping - Clocksource
Example: x86 Time stamp counter (TSC)

● 64-bit per-CPU counter, it is an MSR so fast!!! (slower than cache hit!)

● High resolution (GHz), uses the CPU clock.
● Read using the RDTSC instruction
● RDTSCP also gives the CPU number on which the TSC was read.

Kernel Support - Clocksource: Abstraction of the hardware

● Clocksource kernel API
struct clocksource {

 cycle_t (*read)(struct clocksource *cs);

 cycle_t mask;

 u32 mult;

 u32 shift;

 // ...

};

clocksource_register_hz(struct clocksource *cs, u32 hz);

clocksource_register_khz(struct clocksource *cs, u32 khz);

● Time difference
// Note that this breaks if clocksource on all CPUs are not synced!

struct clocksource *cs = &system_clocksource;

cycle_t start = cs->read(cs);

// ... /* do something for a while */

cycle_t end = cs->read(cs);

clocksource_cyc2ns(end - start, cs->mult, cs->shift);

Slide Courtesy: Stephen Boyd

So what do we use the clocksource for?

● Timekeeping: Moving time in the system forward.
● Reading time at a given instant.

Slide Courtesy: Stephen Boyd

Kernel Support - Timekeeper update
1. Clocksource read during update_wall_time()

New clock = ((last_cycle - current cycle) * multiplier) + Old.

2. Update is done every jiffy.

Slide Courtesy: Stephen Boyd

Kernel Support - Timekeeper update

To summarize previous chart.

● Clocksource is read and accumulated into struct timekeeper:

○ This structure has 2 components to keep track of time in seconds.

■ xtime_nsec : The time so far in nanoseconds.

■ xtime_sec : If the nsecs grows more than a second, it overflows into this element.

■ Number of cycles during last clocksource read is noted during every TK update.

● Needed to update timekeeping.

● As we’ll see next, needed to read instantaneous time as well.

Ans: Timekeeper (last slide) + Clocksource Read (delta) + Adjustments

Slide Courtesy: Stephen Boyd

Q: That’s every jiffy but.. How is time at any instant read?

struct timekeeper {

 struct tk_read_base tkr_mono;

 u64 xtime_sec;

 ktime_t offs_real;

 ktime_t offs_boot;

 ktime_t offs_tai;

 ...

}

Updated by
update_wall_time()

Updated by NTP or
clock_settime() for
CLOCK_REALTIME

Updated with suspend time for
CLOCK_BOOTTIME

Kernel Support - Timekeeper readout

Kernel Support - Timekeeping Accumulation (Code)

● Wallclock time is updated every jiffy by a designated CPU:
○ tick_nohz_highres_handler() ->

 tick_sched_do_timer() ->

tick_do_update_jiffies64() ->

 update_wall_time()

Few more things for completeness:

Now let us jump into a real example of an x86 clock source

-- our old friend TSC again.

And what issues plague the TSC?

x86 Time stamp counter (TSC)

● 64-bit per-CPU counter, it is an MSR so fast!!! (slower than cache hit!)

● High resolution (GHz), uses the CPU clock.

Kernel Support - Clocksource - TSC issues
TSC stability (frequency invariance).

● CPU clock can change frequency and affect TSC increment rate.

● Older CPU models unreliable to frequency dep, but recently constant.

○ Check "constant_tsc" flag in /proc/cpuinfo

● If CPU does not have constant_tsc feature, then if cpufreq changes, TSC marked unstable

(mark_tsc_unstable()).

● Clocksource reselection happens once TSC clocksource is marked unstable. Switches to HPET via

clocksource watchdog kthread.

Kernel Support - Clocksource - TSC issues
TSC stoppage (due to deep idle)

● TSC can stop counting in idle states because depends on CPU clock liveness.

● CPU PM may effect

○ Check “nonstop_tsc” flag in /proc/cpuinfo

● If CPU does not have nonstop_tsc feature, then idle driver may mark TSC unstable

(mark_tsc_unstable()) if deeper than C2 state is allowed / chosen.

● Clocksource reselection happens once TSC clocksource is marked unstable. Switches to HPET.

Kernel Support - Clocksource - catch it red handed
Clocksource watchdog to keep an eye on clocksource stability

● A timer is scheduled to run every half a second to verify clocksource stability for clocksources

with CLOCK_SOURCE_MUST_VERIFY flag.

● Another clocksource that does not have CLOCK_SOURCE_MUST_VERIFY is compared against.

If large difference between the 2 clocksource’s understanding of time progression,

clocksource is marked unstable.

● Once marked unstable, kthread worker selects a new clocksource (like HPET for x86).

That’s it for clock source, timestamps..

Now lets see how timer events are handled

Userspace - Timers (will just skim through userspace to spend more time on the kernel part)

● POSIX timers
● timerfd
● sleep
● timeouts for syscalls
● hrtimer user in kernel

Timer is a mechanism to generate a notification at a future point of time.

Userspace - POSIX timers

int timer_create(clockid_t clockid, struct sigevent *sevp, timer_t *timerid);

○ Create a per-process interval timer. Returns unique timer ID

○ Clockid is any of the clocks we discussed.

■ Some additional special clocks exist such as:

● CLOCK_PROCESS_CPUTIME_ID - measures CPU time consumed by all threads.

● CLOCK_THREAD_CPUTIME_ID - same but just for calling thread.

○ struct sigevent : specifies how the caller should be notified when the timer expires.

Userspace - POSIX timers - arming
int timer_settime(timer_t timerid, int flags,

 const struct itimerspec *new_value,

 struct itimerspec *old_value);

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

returns the time until next expiration & the interval

struct itimerspec {

 struct timespec it_interval; /* Timer interval, (If 0, then timer is ONESHOT) */

 struct timespec it_value; /* Initial expiration (relative to current time, can be changed by flags)

(If 0, disarms the timer) */

};

 struct timespec {

 time_t tv_sec; /* Seconds */

 long tv_nsec; /* Nanoseconds */

 };

Userspace - POSIX timers - arming
int timer_settime(timer_t timerid, int flags,

 const struct itimerspec *new_value,

 struct itimerspec *old_value);

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

struct itimerspec {

 struct timespec it_interval;

 struct timespec it_value;

};

Provide new interval

Userspace - POSIX timers - arming
int timer_settime(timer_t timerid, int flags,

 const struct itimerspec *new_value,

 struct itimerspec *old_value);

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

struct itimerspec {

 struct timespec it_interval;

 struct timespec it_value;

};

Provide new interval

Initial expiration (relative to current
time, can be changed by flags)

Userspace - POSIX timers - arming
int timer_settime(timer_t timerid, int flags,

 const struct itimerspec *new_value,

 struct itimerspec *old_value);

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

struct itimerspec {

 struct timespec it_interval;

 struct timespec it_value;

};

Provide new interval

Frequency of expiration, If zero, the
timer is one shot.

Initial expiration (relative to current
time, can be changed by flags)

Userspace - POSIX timers
What does the kernel do internally?

● For each clock, there is a struct kclock.
● As you can see, it uses hrtimer under the hood.

A note on alarm clock ids and POSIX timers
● There are 2 additional clock ids that can be used with userland timers:

● CLOCK_REALTIME_ALARM

● CLOCK_BOOTTIME_ALARM

● When used, they wake the system up even during suspend. See

kernel/time/alarmtimer.c

● Uses RTC hardware which is active even when the system is suspended.

Userspace - timerfd
● File descriptor based timers

● Advantage is, can use select/poll because of fd.

● This also allows uses hrtimer under the hood.

● Will not go over more details, check documentation.

Userspace - Comparing POSIX timers and timerfd

Feature timerfd POSIX Timers

Identifier File descriptor Timer ID

Closing/Deletion close() on the file descriptor timer_delete()

Creation timerfd_create() timer_create()

Configuration/Arming timerfd_settime() timer_settime()

Portability Linux-specific
POSIX standard, wider portability across Unix-like
systems

Synchronization
Simplifies synchronization by using file
descriptors

Requires careful signal handling, especially in
multithreaded environments

Integration with Event
Loops

Natural fit for event loops using epoll, select, or
poll

Can we made to work with event loops but requires
additional step like signalfd.

Kernel Support - Clockevents and timers

A clockevent device abstracts a device which generates interrupt at

programmed time in the future.

There are 2 types of clockevents:

● Per-CPU -- dependent of CPU , example LAPIC timer.

● Global -- independent of CPU , example HPET.

Kernel Support - Clockevents
A clockevent device abstracts a device which generates interrupt at programmed time in the future.

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

Kernel Support - Clockevents
A clockevent device abstracts a device which generates interrupt at programmed time in the future.

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

Program next event
(relative and absolute).

Kernel Support - Clockevents
A clockevent device abstracts a device which generates interrupt at programmed time in the future.

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

Run callback on next event.

Kernel Support - Clockevents
A clockevent device abstracts a device which generates interrupt at programmed time in the future.

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

Run callback on next event.

Clock event features. ONESHOT is
required for NOHZ

Kernel Support - Clockevents
Clockevent drives the timer events on every CPU

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

HRTimer timers

Timer wheel timers

Timekeeping, Periodic Tick

Kernel Support - Clockevents

Clockevent Example: Local APIC timer (lapic)

● Per-CPU Interrupt Controller with a timer.

● Tightly coupled with CPU core.

● Low precision (~MHz) as countdown rate determined by external bus freq.

● Has a “TSC deadline mode” which gives it GHz precision.

○ Generates an IRQ whenever TSC crosses certain value.

○ Write absolute TSC deadline to IA32_TSC_DEADLINE MSR arms it.

Kernel Support - Clockevent
Clockevent Example: Local APIC timer (lapic)

Kernel Support - Clockevent

Clockevent Example: HPET

● Outside the CPU die

● Lower resolution than Local APIC (MHz).

● Applications / peripherals don’t need to depend on CPU for timing

○ Aggressive CPU power management states might turn off timers.

○ On systems without Deep C-states, Local APIC is preferred over HPET. See link.

https://yhbt.net/lore/all/4B50E3C4.2050305@compro.net/T/

Kernel Support - Clockevent

Clockevent Example: HPET

Another diagram..

(PCH)

Kernel Support -
Clockevent

Clockevent Example: HPET

● Local APIC timer shuts down in

Deeper idle states (typically C3)

Clockevent Example: HPET

● HPET stays awake and can

be used (also known

as a broadcast timer)

Kernel Support -
Clockevent

Kernel Support - Clockevent

Clockevent Example: HPET
● This is also known as “broadcast timer”.

● To see the currently assigned broadcast timer,

cat /sys/bus/clockevents/devices/broadcast/current_device

hpet

Kernel Support - Clockevent

Quiz: Obviously you have one HPET multiple CPUs that can be into deep idle state, how

can that possibly work?

Just who are you kidding ???

Kernel Support - Clockevent: Broadcast Algorithm
Main take away: A CPU mask keeps track of those
CPUs in broadcast mode.

Broadcast timer repeatedly fires as many times as
needed till mask empty.

Kernel Support - Clockevent

More about HPET

● Can also be used as a clocksource instead of TSC.

● Can be used as a stable reference for TSC (to know if TSC is unstable).

● Slower than the TSC, not an MSR access but rather memory-mapped IO.

Kernel support - Timer wheel

Timer wheel - basic idea

● Existed from Linux early days.

● Timers that expire every 1/HZ (1 jiffy).

● Need to sort timers by order of expiry (earlier expiring timers can be queued later)

● Fast insertion, deletion expiry

○ Boils down to linked list tradeoff: Cannot have O(1) for insertion, removal and

next expiry.

○ Can we gain O(1) and tradeoff space -- arrays!

● Most timer wheel users are timeouts (canceled)

Kernel support - Timer wheel

How would you design and timer subsystem?

● Need to sort timers by order of expiry (earlier expiring timers can be queued later)

● Fast insertion, deletion expiry

○ Tradeoff: Cannot have O(1) for insertion, removal and next expiry with linked list!

○ Can we gain O(1) and tradeoff space? -- arrays!

● Most timer wheel users are timeouts (canceled)

Kernel support - Timer internal implementation - timer wheel

Timer wheel FIRST level (HZ = 1000) - All timers from ~0ms to 63ms expiry are placed here
(Note the arrays are per-cpu. Timer expiry is per-cpu.)

1ms 1ms 1ms 1ms 1ms 1ms 1ms 1ms

Total 64 elements

Kernel support - Timer internal implementation - timer wheel

● Timer wheel FIRST level (HZ = 1000) - What about > 63ms, can we keep having 1ms
entries?

● NO! Will need huge arrays!

Kernel support - Timer internal implementation - timer wheel

Timer wheel SECOND level (HZ = 1000) - All timers from 64ms to 511ms expiry are placed here

64ms 64ms 64ms 64ms 64ms 64ms 64ms 64ms

Total 64 elements

(64 to 127) (128 to 191)

Keep moving the wheel till we hit end of first level..
Then take all timers out of first bucket of second level, move to first. Repeat.

(64 to 127)

The first level

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

Cascade

Keep moving the wheel till we hit end of first level..
Then take all timers out of first bucket of second level, move to first. Repeat.

(64 to 127)

The first level

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

1m
s

Cascade

Cascading thought to not be worth it

● Most timers and removed before expiry, so cascading efforts wasted.

● All that while, also dirties cache lines moving timers between lists.

Kernel support - Timer internal implementation - timer wheel

No cascading of timers like before But now…

Larger the timeout, lower the granularity!

 * HZ 1000 steps

 * Level Offset Granularity Range

 * 0 0 1 ms 0 ms - 63 ms

 * 1 64 8 ms 64 ms - 511 ms

 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)

 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)

 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)

 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)

 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)

 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)

 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)

Kernel support - Scheduling Clock Interrupt

● A timer interrupt that goes at a fixed rate (HZ)

● Interval of the interrupts is a “jiffie” (1 / HZ).

● One of the primary functions of the tick is for preemptive multitasking.

● The HZ rate is a balance between overhead and responsiveness.

● “jiffies” is itself a global variable that is incremented by a designated CPU.

Kernel support - Deferrable timers (skip to 64 if no time)
A quick diagram on CPUidle trying to stop the periodic tick (NOHZ)

This is a clockevent programming

Kernel support - Deferrable timers

A quick diagram on CPUidle trying to stop the periodic tick

Deferrable timers are skipped
when finding next event!

Kernel support - Deferrable timers

Deferrable timers have their own timer wheel:

Proof:

#ifdef CONFIG_NO_HZ_COMMON
define NR_BASES 2
define BASE_STD 0
define BASE_DEF 1
#else
define NR_BASES 1
define BASE_STD 0
define BASE_DEF 0
#endif

static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);

Kernel support - Deferrable timers

Deferrable timers initialization and firing

● Deferred timers are initialized by a call to timer_setup() with the TIMER_DEFERRABLE flag.

● The per-cpu clock event which is programmed for NON DEFERRABLE timer event fires:

tick_sched_handle() ->

update_process_times() ->

run_local_timers()

Kernel support - Deferrable timers

Deferrable timers initialization and firing

● When this clock event fires, it also scoops up the expired deferrable timers:

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
static void run_local_timers(void)
{

struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

/* Raise the softirq only if required. */
if (time_before(jiffies, base->next_expiry)) {

if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
return;

/* CPU is awake, so check the deferrable base. */
base++;
if (time_before(jiffies, base->next_expiry))

return;
}
raise_softirq(TIMER_SOFTIRQ);

}

Kernel support - Deferrable timers

Deferrable timers initialization and firing

● Finally, the timer softirq runs the deferred timers as well.
static void run_timer_softirq(struct softirq_action *h)

{

struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

__run_timers(base);

if (IS_ENABLED(CONFIG_NO_HZ_COMMON))

__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));

}

Kernel support - Deferrable timers

Example of a Deferrable timer user:

static int init_worker_pool(struct worker_pool *pool)

{

 [...]

 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);

 [...]

}

/**

 * idle_worker_timeout - check if some idle workers can now be deleted.

 * @t: The pool's idle_timer that just expired

 */

static void idle_worker_timeout(struct timer_list *t)

CPU 1CPU 0

Kernel support - high resolution timers (hrtimer)

timerqueue_node

timerqueue_node
Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_M
ON
OT
ON
IC
)

Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_R
EA
LT
IM
E)

Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_B
OO
TT
IM
E)

Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_M
ON
OT
ON
IC
)

Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_R
EA
LT
IM
E)

Hr
ti
me
r_
cl
oc
k_
ba
se

(C
LO
CK
_B
OO
TT
IM
E)

Kernel support - high resolution timers (hrtimer)

Hrtimer Range timers : Hrtimers can be queued with some “timer slack”

● Normal hrtimers will have both a soft expiry and hard expiry which are equal to each other.

● But hrtimers with slack will have a soft expiry & hard expiry which is the soft expiry + delta.

● The idea is to reduce wakeups and save power.

Normal HRtimer without slack

=00:30

HRtimer with slack expires after soft, AT hard expiry..

00:25

HRtimer with slack expires after soft, before hard expiry.

00:30

Kernel support - high resolution timers (hrtimer)
Diagram of a single rbtree.

Kernel support - high resolution timers (hrtimer)
Diagram of a single rbtree.

Note: The earliest HARD
expiry time clockevent is
programmed!

Simplified algorithm for HRTimer expiry

Remember that for normal (non-slack) timers,
hard exp == soft exp time.

A soft expired timer may not always execute when a hard expired one runs.

● Consider the situation of hard expiries in the timerqueue: [5, 10, 20, 30, 40]

● The corresponding soft expiries for these are : [5, 10, 9, 30, 8]

● Notice that the 3rd and 5th timers are slack (hard expiry != soft expiry)

Say the second timer (a non-slack one) is currently expiring and the time is now T=10.

Now, since the 3rd timer’s soft expiry is 9, that is expired as well.

BUT, timer 5 has also expired and is not considered because we break out of the loop due to timer 4. So, In theory

that could have been run but its not!

Kernel support - high resolution timers (hrtimer)

Main takeaways:

● Nanosecond resolution instead of jiffies (but depends on hardware, IRQ delays etc)

● Higher overhead for insertion, removal than wheel.

● Required for Real Time workloads which need high resolution (cyclictest is a test).

● Different POSIX clocks have their own rbtree.

● Further, all the rbtrees are duplicated for each CPU.

● Timer slack can save power by reducing number of interruptions and coalescing.

● Soft expired timers may not always run even if they could.

● HRtimers are not deferrable unlike timerwheel ones.

Users of Timer wheel vs HRtimers

Use case Infra

schedule_timeout(jiffies)
 -- synchronous sleep jiffies until timeout (used a lot in net, fs, gfx, RCU etc.)

timer wheel

Networking, filesystems, misc timeouts timer wheel

RCU internal machinery timer wheel

Futex timeout (syscalls accept clockids) hrtimer

Nanosleep syscall hrtimer

POSIX clocks, timers, timerfd APIs hrtimer

Scheduler tick in high res mode hrtimer (sched_timer)

Timer wheel expiries in high res mode hrtimer (sched_timer)

Comparison of Timer wheel vs HRtimers

Timer wheel HRtimer

Resolution Jiffy (1/HZ) Nanoseconds.

Insert/Deletion Overhead O(1) O(log)

Number of IRQs Low High

Can be turned off No Yes (low res mode, HRtimer API still
effective at low accuracy).

Back to the periodic tick..

● Now let us get into the periodic tick.

● Also known as the tick.

● Also known as the scheduling clock interrupt.

Kernel support - Scheduling Clock Interrupt

● A timer interrupt that goes at a fixed rate (HZ)

● Interval of the interrupts is a “jiffie” (1 / HZ).

● One of the primary functions of the tick is for preemptive multitasking.

● The HZ rate is a balance between overhead and responsiveness.

● “jiffies” is itself a global variable that is incremented by a designated CPU every 1/HZ.

Recall… Kernel Support - Clockevents
A clockevent device abstracts a device which generates interrupt at programmed time in the future.

struct clock_event_device {
 void (*event_handler)(struct clock_event_device *);
 int (*set_next_event)(unsigned long evt, struct clock_event_device *);
 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *);
 ktime_t next_event;
 u64 max_delta_ns;
 u64 min_delta_ns;
 u32 mult;
 u32 shift;
 unsigned int features;
 #define CLOCK_EVT_FEAT_PERIODIC 0x000001
 #define CLOCK_EVT_FEAT_ONESHOT 0x000002
 #define CLOCK_EVT_FEAT_KTIME 0x000004
 int irq;
 // ...
};

void clockevents_config_and_register(struct clock_event_device *dev,
 u32 freq, unsigned long min_delta,
 unsigned long max_delta);

Run callback on next event.

Clock event features. ONESHOT is
required for NOHZ

Which handler is run depends on the “tick mode” of the system.

The tick internals

Handler Usage

tick_handle_periodic() Periodic mode

tick_nohz_handler() Low res mode

hrtimer_interrupt() High res mode

Different handler for different tick modes.

The tick internals

tick_handle_periodic() - Ticks even during Idle

|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------> time
 T1 idle idle idle t2 t3

 The tick

Key:
t1, t2, t3: tick’s timer expiry periods.
idle: Idle periods

Periodic mode

The tick internals

tick_nohz_handler() - No ticks during idle

|-----|------------------|-----|-----|-----|-----|-----|----> Time
 t1 idle t2 t3

 The tick

Key:
t1, t2, t3: tick’s timer expiry periods.
idle: Idle periods

● Also known as NOHZ mode (CONFIG_NOHZ_IDLE).

● Requires one-shot mode in clockevent! (fire once in the future at dynamic
point)

Low resolution mode (Tickless and low res)

The tick internals

Note!

In periodic and low res mode: The scheduling clock interrupt
handles both Timer wheel and HR timer events!

The tick internals

Comparison between periodic and low res mode

Mode Periodic Low Res

Minimum timer
resolution

1 / HZ 1 / HZ

What if need lower resolution

We already have ONESHOT
capable clockevent for low res.

We can program that to fire at any
time (nanosecond) in future, not just
at 1/HZ.

The tick internals

hrtimer_interrupt() - No ticks during idle + independent highres irqs.

|-----|------------------|-----|-----|-----|-----|-----|-----|------> time
 t1 idle t2 t3

 The tick

 (In highres mode, The tick is itself an hrtimer!)

Key:
t1, t2, t3: tick’s timer expiry periods.
idle: Idle periods

● Compatible with NOHZ mode (CONFIG_NOHZ_IDLE).

● Needs a clockevent device capable of firing in one-shot mode (fire once in the
future at dynamic point)

High resolution mode (Tickless and high res)

Random independent
hrtimers cause same clockevent
handler to fire.

The tick internals

Comparison between periodic, low and high res mode
Mode Periodic Low Res High Res

Ticks during
idle

Yes No No

Minimum
timer
resolution

1 / HZ 1 / HZ Nanosecond

Hrtimer API Still works but
low in res.

Still works but
low in res.

High resolution

Power
Savings

Bad Good Ok

Practical No Could be Yes

Requires ONE
SHOT
clockevent

No Yes Yes

Kernel support - NOHZ - Turn off the tick

● Tick does not need to run when CPU is idle, it wastes power.

● CPUidle governor makes a decision about turning off the tick.

● CONFIG_NO_HZ_IDLE turns off tick when CPU is idle.

● CONFIG_NO_HZ_FULL turns off tick if only 1 task is active or CPU idle.

Kernel Support - CPUidle governor and Tick Stop
Old kernels:

Stop tick,
Then choose
Idle state

(Governor
Doesn’t
Stop the tick)

Kernel Support - CPUidle governor and Tick Stop

Newer kernels, 4.16+
Lower overhead and more
Power savings.

Governor chooses idle state and
decides to stop the periodic tick.

See commit:
Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Date: Thu Mar 15 23:05:50 2018 +0100

 sched: idle: Do not stop the tick upfront in the idle loop

Governor was
wrong but

“rescue tick”
saved it

Governor was right
and tick restart
overhead was

avoided

NOHZ code is boss! Final decision for tick shutdown left to it.
(Governor just hints)

Do recall that even though governor decided to
stop the tick, if there is an imminent timer event
expected,the periodic tick will be left on…

Which relies on the
periodic tick

Tick is unconditionally restarted upon exiting from CPU idle state

Kernel support - NOHZ - Periodic Tick restart

Putting it
Together…

The periodic
tick lifecycle. Which relies on the

periodic tick

VDSO

● Some timekeeping syscalls are available as VDSO, like clock_gettime(). Huge perf benefit.

● Kernel maps code and data into user space to allow direct calls, not supported on all

architectures.

● VDSO mapping is an ELF object, similar to a dynamic library, mapped into user space with a

dynamic symbol table for function location.

Example, for clock_gettime() VDSO implementation:

● VDSO mapping contains a struct vdso_data in the data page for time calculation, including

base time, last TSC value, and slope.

● Users calculate current time by reading the TSC and applying the formula:

Current time = base time + (current TSC - last cycle) * slope.

VDSO

makes a note of the VDSO map’s location
and provides helpers to the C library to lookup vdso)

Thank you! It is time!

Until another time… ;-) -Joel

