

Kernel Livepatching: An
Introduction

Joe Lawrence, Principal Software Engineer, Red Hat
Marcos Paulo de Souza, Software Engineer, SUSE

Agenda
• Intro and ksplice beginnings
• kpatch & kGraft open source (re)implementations
• Upstream collaboration
• Examples
• Limitations

Scope and Expectations
• An overview of kernel livepatching technology
• Introduction of the risks of livepatches
• Resources to look for when creating livepatches

Intro and ksplice beginnings

Why livepatches

• 498 published CVEs for upstream Linux Kernel in 2024 until 08 May 2024
– Since Kernel became a CNA (CVE Numbering Authority) on 13 Feb 2014.

• Rebooting modern servers can push
expensive and limited hardware offline

– Starting services like databases from
boot may require a long time priming
caches

– Some hypervisor guests are not easily
migratable

https://git.kernel.org/pub/scm/linux/security/vulns.git/tree/cve/published/2024

Who creates livepatches?

https://ksplice.oracle.com/
https://tuxcare.com/
https://www.suse.com/products/live-patching/
https://www.redhat.com/en/topics/linux/what-is-linux-kernel-live-patching
https://ubuntu.com/security/livepatch
https://docs.aws.amazon.com/linux/al2023/ug/live-patching.html

History: ksplice

• Ksplice: An Automatic System for Rebootless Kernel Security Updates, Jeff Arnold (2008)
– “Since rebooting can cause disruption, system administrators often delay performing

security updates, despite the risk of compromises.”

• Announced on the LKML in 2008
• MIT students create Kpatch, Inc. in 2009
• Acquired by Oracle on 2011, now closed source :(

https://pdos.csail.mit.edu/papers/ksplice:jbarnold-meng.pdf
https://lore.kernel.org/lkml/alpine.DEB.1.00.0802221606520.21343@vinegar-pot.mit.edu/

ksplice key concepts

• Function granularity - most C functions have singular, well defined entry points
• Finding a safe time to update - functions should not be mid-execution by any thread

– Safety check implemented via kernel’s stop_machine_run() call
– Cannot upgrade non-quiescent kernel functions like schedule()

• Patches loaded via kernel modules
• Ability to apply subsequent hot patches

kpatch & kGraft - initial LMKL RFCs

• 30 Apr 2014 - [RFC 00/16] kGraft
– Linux kernel online patching developed at SUSE
– Per-task consistency: each thread either sees the old version or the new version of

functions
– Transition only when the task exits kernel mode

• 1 May 2014 - [RFC PATCH 0/2] kpatch: dynamic kernel patching
– Developed by Red Hat, modeled after initial ksplice project
– stop_machine() - all tasks see old or new version of functions
– Requires reliable stack unwinding (see Reliable Stacktrace kernel doc)

https://lore.kernel.org/lkml/1398868249-26169-1-git-send-email-jslaby@suse.cz
https://lore.kernel.org/lkml/cover.1398958771.git.jpoimboe@redhat.com
https://docs.kernel.org/livepatch/reliable-stacktrace.html

kpatch & kGraft open source (re)implementations

kpatch & kGraft - common ftrace implementation

Both RFCs leveraged the kernel’s existing
ftrace function hooking mechanism to detour
control flow:

1. Original function entry
2. Ftrace caller redirection
3. Patched function entry
4. Return skips original function, returns

directly to its caller

There is a talk from the
ftrace creator on other LF
Mentoring Session here.

Original
function

__fentry__
call

Patched
function

__fentry__

Ftrace
handler

call

return

return

https://www.kernel.org/doc/html/latest/trace/ftrace-uses.html
https://youtu.be/mlxqpNvfvEQ

Userspace function padding with mcount

We need to space at the beginning of functions to insert redirection calls. This can be seen in
userspace code when building with gcc’s -pg profiling option.

Example: https://godbolt.org/z/6787dxfvM
When compiling with -pg, this 5-byte sequence is added to the beginning of the square() function:

e8 00 00 00 00
call d <square(int)+0xd>

R_X86_64_PLT32 mcount-0x4

https://godbolt.org/z/6787dxfvM

Kernel function padding with fentry

Similar function entry padding is provided in kernel builds, too.

Dynamic ftrace feature
• Turns on the -pg switch in the compiling of the kernel
• Starting with gcc version 4.6, the -mfentry switch has been added

for x86, which calls “__fentry__” instead of “mcount”
• On boot up, dynamic ftrace code updates all fentry locations into nops.

See ftrace.html kernel
docs for more on
__fentry__ details

https://docs.kernel.org/trace/ftrace.html#dynamic-ftrace

kernel fentry (Background slide)

Step 1 - Determine the latest upstream kernel version:

$ git ls-remote --tags \

 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git | \

 grep -o 'v[0-9].[0-9]*$' | sort --version-sort --key=2 | tail --lines=1

v6.8

Step 2 - Shallow clone the latest upstream kernel tree:

$ git clone --depth=1 --branch v6.8 \

 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Steps 1 & 2 are optional
if you already have a

local kernel tree.

kernel fentry (Background slide)

Step 3 - Configure the kernel with arch defaults, plus livepatching settings:

$ cd linux

$ make defconfig

$./scripts/config --set-val CONFIG_FTRACE y \

 --set-val CONFIG_KALLSYMS_ALL y \

 --set-val CONFIG_FUNCTION_TRACER y \

 --set-val CONFIG_DYNAMIC_FTRACE y \

 --set-val CONFIG_DYNAMIC_DEBUG y \

 --set-val CONFIG_LIVEPATCH y \

 --set-val CONFIG_RUNTIME_TESTING_MENU y \

 --set-val CONFIG_SAMPLES y \

 --set-val CONFIG_SAMPLE_LIVEPATCH m

$ make olddefconfig

These options are for
the livepatching core,

samples, and kselftests

kernel fentry padding for cmdline_proc_show()

Step 4 - Compile fs/proc/cmdline.c -> cmdline.o:

$ make --silent --jobs=$(nproc) fs/proc/cmdline.o

Step 5 - Disassemble cmdline.o with binutils’s objdump utility:

$ objdump --disassemble-all --reloc \

 --section=.text fs/proc/cmdline.o

...

0000000000000010 <cmdline_proc_show>:

 10: f3 0f 1e fa endbr64

 14: e8 00 00 00 00 call 19 <cmdline_proc_show+0x9>

 15: R_X86_64_PLT32 __fentry__-0x4

kpatch & kGraft - differences

• Kpatch used stop_machine() to quiesce the system and apply patches only when safe, retrying
when needed.

• kGraft implemented a “lazy” per-task approach that switched tasks individually when ready,
leaving the system otherwise running during the transition to an increasingly patched system .

task4

task1

task2

task3

stop_machine()

One CPU executes code to
decide if it is safe to

redirect all tasks to new
livepatch code

stop_machine()

May need to execute a few
times to find a safe time
to enable livepatch for

all tasks

(patched)

(patched)

(patched)

(patched)

Kpatch RFC: stop_machine() update implementation

Tasks are redirected en masse, but only when it’s safe for ALL of them
 PROs = conceptually simple
 CONs = may require many retries, long latencies

task1

task2

task3

task4

(patched)

(patched)

(patched)

(patched)

kGraft In-progress

kGraft RFC: “Lazy” per-task switching implementation

Tasks are individually redirected as it is safe for them to do so
 PROs = livepatching takes as long as it needs, system remains executing tasks
 CONs = conceptually complex

Upstream collaboration

Which RFC to merge?

• Kernel community requested a single API and livepatching approach
• Some favored stop_machine() as a simpler way to make sure livepatching works
• There were no apparent bugs with “lazy” per-task approach, but still couldn’t livepatch kthreads

either

2014 Dec 16
b700e7f03df5 (“livepatch: kernel: add support for live patching”)

• Introduces code for the live patching core
• Represents the greatest common functionality set between kpatch and kgraft and can accept

patches built using either method
• Does not implement any consistency mechanism to ensure old and new code do not run

together

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b700e7f03df5

A little while later …

Many proposals, reviews, ideas, and comments from the community, including: Miroslav Benes,
Masami Hiramatsu, Seth Jennings, Jiri Kosina, Ingo Molnar, Petr Mladek, Vojtech Pavlik, Josh
Poimboeuf, Steven Rostedt, Jiri Slaby and others

2017 Feb 13
d83a7cb375ee (“livepatch: change to a per-task consistency model”)

• Change livepatch to use a basic per-task consistency model
• Hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching

combined with kpatch's stack trace switching

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d83a7cb375ee

Livepatch consistency model: Starting Transition

Start
transition

For all threads:

Set thread flag as
TIF_PATCH_PENDING

Try to
complete
transition

System remains executing threads during all livepatch transition phases

Livepatch consistency model: Completing Transition

System remains executing threads during all livepatch transition phases

Try to
complete
transition

For all threads

If thread callstack is safe to patch,
clear TIF_PATCH_PENDING

Any remaining
TIF_PATCH_PENDING threads?

Transition
complete

Wake up idle
and pending

threads
Sleep 1s

No

Yes

Livepatch API - Basic Data Structures

klp_foo() { ... } // replacement function code

struct klp_patch // top-level data structure

 .replace = false // replace all actively used patches

 struct klp_object [] // patch targets:

 .name = "moduleX" // module name or NULL for vmlinux

 struct klp_func [] // original functions and replacements

 .old_name = "old_foo" // old:new function associations

 .new_func = klp_foo()

klp_enable_patch(&klp_patch); // do it!

Atomic Replace livepatches

• Disable all previously applied livepatches
• Useful when creating new livepatches containing all previous fixes
• Easier to manage when dealing with tens of livepatches

// .replace struct member as true

static struct klp_patch patch = {

 .mod = THIS_MODULE,

 .objs = objs,

 .replace = true,

};
CVE-2023-46813

CVE-2023-5633 CVE-2023-5633

+ =

livepatch-1.ko livepatch-2.ko System State

CVE-2023-6546 CVE-2023-6546

Stacked livepatches

• Applied without interfering with previous livepatches
• Not stacked, but each livepatch is managed individually

// .replace struct member as false

static struct klp_patch patch = {

 .mod = THIS_MODULE,

 .objs = objs,

 .replace = false,

};
CVE-2023-46813

CVE-2023-5633

CVE-2023-46813

CVE-2023-5633

+ =

livepatch-1.ko livepatch-2.ko System State

Upstream - Currently

• Supported on x86_64, ppc64le, ppc32 and s390x
– Aarch64 support ongoing

• Multiple companies relying on livepatching for their fleets
– Meta
– (...)

• Upstream tests being run by multiple companies to ensure it’s working properly
– Some out-of-tree tests are being upstreamed as well

https://github.com/SUSE/qa_test_klp

Examples

Example - livepatch /proc/cmdline interface

// Original function from fs/proc/cmdline.c

static int cmdline_proc_show(struct seq_file *m, void *v)

{

 seq_puts(m, saved_command_line);

 seq_putc(m, '\n');

 return 0;

}

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/proc/cmdline.c

Example - livepatch /proc/cmdline interface

// samples/livepatch/livepatch-sample.c

#include <linux/seq_file.h>

// Replacement function, note the same argument and return interface

static int livepatch_cmdline_proc_show(struct seq_file *m, void *v)

{

 seq_printf(m, "%s\n", "this has been live patched");

 return 0;

}

// ... continued ...

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/samples/livepatch/livepatch-sample.c

Example - livepatch /proc/cmdline interface

// klp_func[] array describes all livepatch original and replacement functions

static struct klp_func funcs[] = {

 {

 .old_name = "cmdline_proc_show",

 .new_func = livepatch_cmdline_proc_show,

 }, { }

};

// ... continued ...

Example - livepatch /proc/cmdline interface

// klp_object[] array describes all kernel objects (NULL for vmlinux) and functions to patch

static struct klp_object objs[] = {

 {

 .funcs = funcs,

 }, { }

};

// klp_patch contains all objects to patch

static struct klp_patch patch = {

 .mod = THIS_MODULE,

 .objs = objs,

};

// ... continued ...

Example - livepatch /proc/cmdline interface

static int livepatch_init(void)

{

 return klp_enable_patch(&patch);

}

static void livepatch_exit(void)

{

}

module_init(livepatch_init); // wire up module init/exit functions to enable the livepatch

module_exit(livepatch_exit);

MODULE_LICENSE("GPL");

MODULE_INFO(livepatch, "Y"); // don’t forget to identify the module as a livepatch

Demo (samples/livepatch/livepatch-sample.c)

Example - livepatch /proc/cmdline interface

Initial conditions

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-6.8.7-1-default root=UUID=9a0ee7fb-04c5-49e1-8333-88f83f8fca75

splash=silent mitigations=auto quiet

Load the livepatch

$ sudo dmesg -C

$ sudo insmod samples/livepatch/livepatch-sample.ko

Example - livepatch /proc/cmdline interface

Dump kernel log to review transition

$ dmesg

[14.650630] livepatch_sample: tainting kernel with TAINT_LIVEPATCH

[14.650883] livepatch: enabling patch 'livepatch_sample'

[14.653698] livepatch: 'livepatch_sample': starting patching transition

[16.156028] livepatch: 'livepatch_sample': patching complete

Test it out!

$ cat /proc/cmdline

this has been live patched

Example - livepatch /proc/cmdline interface

Disable the livepatch

$ echo 0 > /sys/kernel/livepatch/livepatch_sample/enabled

Test it to see initial conditions

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-6.8.7-1-default root=UUID=9a0ee7fb-04c5-49e1-8333-88f83f8fca75

splash=silent mitigations=auto quiet

Final cleanup

$ sudo rmmod livepatch_sample

Example of an easy livepatch

2e07e8348ea4 ("Bluetooth: af_bluetooth: Fix
Use-After-Free in bt_sock_recvmsg")

● CVE-2023-51779
● Fixes a non-static function
● Don’t contain changes to structs

Solution: the fix itself is very simple

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2e07e8348ea4
https://nvd.nist.gov/vuln/detail/CVE-2023-51779

Shadow Variable Example

1d147bfa6429 ("mac80211: fix AP powersave TX vs.
wakeup race")

● Adds a spinlock_t element to struct sta_info
● Changes to functions like

ieee80211_tx_h_unicast_ps_buf() and
friends expect to use new ps_lock

● Livepatches must handle both pre and post
patched data structure instances!

○ Many struct sta_info may have
already been created, without ps_lock

Solution: shadow variable API

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1d147bfa6429
https://docs.kernel.org/livepatch/shadow-vars.html

…
ps_lock

…

sta_infosta_info

Before vs. After

A conventional patch adds a spinlock_t member to
the structure, changing its memory layout to
squeeze in sizeof(spinlock_t) + alignment bytes.

@ 0x1234

sta_info

@obj, id -> data
0x1234 PS_LOCK 0x9876

klp_shadow_hash

@ 0x9876

ps_lock

klp_shadow

A livepatch conversion allocates a separate shadow
variable to hold a spinlock_t, maintaining the
original structure size and layout.

Shadow Variable Example

klp_shadow_get(0x1234, PS_LOCK) will return ps_lock

Shadow Variable Example -
Matching parent's lifecycle

● Allocate and release shadow variables at
the same time as its parent structure, i.e.
sta_info_alloc()

● Suitable for data structures that are
frequently created and destroyed

#define PS_LOCK 1

struct sta_info *sta_info_alloc(...)

{

 struct sta_info *sta;

 spinlock_t *ps_lock;

 /* Parent structure is created */

 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);

 /* Attach shadow variable, then initialize it */

 ps_lock = klp_shadow_alloc(sta, PS_LOCK,

 sizeof(*ps_lock), gfp, NULL, NULL);

 if (!ps_lock)

 goto shadow_fail;

spin_lock_init(ps_lock);

 ...

Shadow Variable Example -
In-flight creation

● Allocate shadow variables as they are
needed, i.e.
ieee80211_sta_ps_deliver_wakeup()

● Suitable for long lived data structures, or
those that only need require a subset of
patching

int ps_lock_shadow_ctor(..., void *shadow_data, ...)

{

 spin_lock_init((spinlock_t *) shadow_data);

 return 0;

}

#define PS_LOCK 1

void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)

{

 spinlock_t *ps_lock;

 /* sync with ieee80211_tx_h_unicast_ps_buf */

 ps_lock = klp_shadow_get_or_alloc(sta, PS_LOCK,

 sizeof(*ps_lock), GFP_ATOMIC,

 ps_lock_shadow_ctor, NULL);

 /* code continues */

 if (ps_lock)

 spin_lock(ps_lock);

 ...

Complexity

How it’s going

“Rocket-surgery” !@#^%$!
So many functions to edit!
Lots of shadow variables!

Patch upgrades?

How it started

Super easy!
Simple NULL-ptr check

in one function

Limitations

Limitations
● The fix patches a file that has tracing disabled: CVE-2023-46813
● b9cb9c45583b ("x86/sev: Check IOBM for IOIO exceptions from user-space")
● This is usually true when patching low level architecture code

File arch/x86/kernel/Makefile

ifdef CONFIG_FUNCTION_TRACER

Do not profile debug and lowlevel utilities

…
CFLAGS_REMOVE_ftrace.o = -pg

CFLAGS_REMOVE_early_printk.o = -pg

CFLAGS_REMOVE_head64.o = -pg

CFLAGS_REMOVE_head32.o = -pg

CFLAGS_REMOVE_sev.o = -pg
…

(Omits the 5-byte ftrace hook at
the beginning of functions)

https://nvd.nist.gov/vuln/detail/CVE-2023-46813
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b9cb9c45583b

Limitations
● The fix patches an inline function: CVE-2023-5633
● 91398b413d03 ("drm/vmwgfx: Keep a gem reference to user bos in surfaces")
● Some functions that were patched are inlined, so we need to livepatch their callers

https://nvd.nist.gov/vuln/detail/CVE-2023-5633
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=91398b413d03

Limitations
● There are a significant number of situations where a patch cannot be transformed into a livepatch:

○ A fix can patch a function that contains notrace macro, which disables tracing
■ The livepatch needs be based on the top most caller which can be patched

○ Example: 9d2231c5d74e (“lib/iov_iter: initialize "flags" in new pipe_buffer”)
■ Modifies untraceable code, inlines into several exported functions

● Be careful when creating a livepatch targeting multiple architectures
○ Endiness can be a problem (same patch for x86_64 and s390x, for example)
○ A fix can patch static functions, and the compiler is free to inline these into different functions

■ Different compilers on different architectures have different inlining behaviors
○ Code can be optimized differently on different architectures

■ Symbols can be available on one architecture and missing in others

● Hand-crafted livepatches may be dangerous! Consider using a tool to help creating them!

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/lib/iov_iter.c?id=9d2231c5d74e13b2a0546fee6737ee4446017903

Additional References
● SUSE’s livepatch tests
● Kpatch’s patch author guide
● Livepatching mailing list

https://github.com/SUSE/qa_test_klp
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md
https://lore.kernel.org/live-patching/

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

