

Kernel Livepatching:
Hands On

Joe Lawrence, Principal Software Engineer, Red Hat
Marcos Paulo de Souza, Software Engineer, SUSE

Agenda
• Common concerns for both approaches
• Approaches of creating livepatches
• The tools
• Hands on

Scope and Expectations
• An overview of the the available ways of creating livepatches
• How to create a livepatch for your system
• How to test your changes

Last mentorship session - Kernel Livepatching: An Introduction

Recorded May 22, 2024

Kernel livepatching provides a means of updating a running kernel without suffering the downtime of
rebooting. In this session, learn about various livepatching use cases and how the kernel implements
this feature. We'll go over a brief subsystem history and how it has evolved to meet the needs of
several Linux vendors.

Youtube recording

Download slides

https://www.linuxfoundation.org/webinars/kernel-livepatching-an-introduction
https://www.youtube.com/watch?v=OGBjMVWc9M8
https://events.linuxfoundation.org/wp-content/uploads/2024/05/Linux-Livepatch_-Introduction-Mentorship-Webinar-5-22-24.pdf

Livepatch creation process

● Creating livepatches is a laborious process and error prone if done
manually

● There are a many details that needs to be considered:
○ Symbol visibility (inlined, private, duplicate)
○ Macro expansions
○ Private struct and types
○ Non livepatchable functions or files

Livepatch creation process

● Not every upstream patch is ready to become a livepatch!
● Now think about doing all the previous steps being executed by multiple

vendor supported kernels
○ Think about tens of kernel versions, each based on unique upstream

kernel versions and with different patches applied, built by their own
toolchain version combinations.

Livepatch creation tools

“A man is a man, but a man with a tool makes two.”

Ahti, the Janitor from Alan Wake 2 game

Livepatch creation tools

● There are currently two open source approaches to create livepatches
○ Source based
○ Binary based

● Both approaches have pros and cons

Source based livepatch creation

Add livepatch API
hooks

Compile code /
generate livepatch

module

Extract defective
code

Apply patches

Concerns about source based livepatches

● Inlined/optimized functions
○ Copy the functions

● Private types and macros
○ Bring them to the closure

● Private symbols?
○ klp-convert (kallsyms on older kernels)

● Multi-arch livepatch generating

Source based livepatch tools

Present
klp-build
klp-ccp

Future
klp-build
clang-extract

https://github.com/SUSE/klp-build
https://github.com/SUSE/klp-ccp
https://github.com/SUSE/klp-build
https://github.com/SUSE/clang-extract

Source based livepatch creation

klp-build
● Created to check the differences of multiple SUSE kernels when creating a livepatch

○ Being adapted to extract code of the host’s running kernel
● Uses clang-extract to pull out code that requires changes

clang-extract
● Initially created to extract code for userspace livepatches and later adapted to handle

kernel source code
● Uses LLVM machinery to parse the code to be extracted
● Consumes the arguments used to compile the code originally

Source based livepatch creation

● Check which kernel configs are being used in the
livepatch

○ Check if the symbols exists
○ Files exists
○ Configuration entries are enabled
○ Modules were compiled
○ Apply patches before calling clang-extract
○ Applies a templates on the code output from

clang-extract (livepatch API entry points)

klp-build + clang-extract
● Extracts the function to be fixed

○ Check inline functions and brings them into
the final closure

○ Renames symbols if necessary
○ Check private symbols, adding

klp-convert/kallsyms ancillary code as
necessary

○ Generates a closure containing the
necessary to be compiled as a standalone
module kernel module.

klp-build - setup

● klp-build installed (or run from a cloned directory)

● clang-extract installed

○ It depends on LLVM and other more common dependencies (meson, ninja, …)

● A kernel-source tree compiled with klp-convert (it’s not merged upstream yet) and ipa-clones patches

applied.

○ vmlinux/modules are used to check if the symbols to be patched are present

○ ipa-clones files are used to check which functions are inlined

○ Module.symvers file is used to check which functions are present on vmlinux and which needs to be

relocated/externalized

https://github.com/SUSE/klp-build
https://github.com/SUSE/clang-extract
https://github.com/SUSE/klp-build/tree/main/patches

klp-build

$ cat ~/.config/klp-build/config

[Paths]

work_dir = /home/mpdesouza/klp/livepatches

data_dir = /home/mpdesouza/git/linux

klp-build

$ klp-build setup --name lp_cmdline \

--conf CONFIG_PROC_FS \

--file-funcs fs/proc/cmdline.c cmdline_proc_show

klp-build

At this point clang-extract will be called to extract the function
$ klp-build extract --name lp_cmdline --apply-patches

Klp-build - sample patch

$ cat ~/git/linux/fixes/cmdline.patch

diff --git a/fs/proc/cmdline.c b/fs/proc/cmdline.c
index a6f76121955f..f511d0afed52 100644
--- a/fs/proc/cmdline.c
+++ b/fs/proc/cmdline.c
@@ -7,8 +7,7 @@

 static int cmdline_proc_show(struct seq_file *m, void *v)
 {
- seq_puts(m, saved_command_line);
- seq_putc(m, '\n');
+ seq_printf(m, "%s patched=1\n", saved_command_line);
 return 0;
 }

klp-build - code extracted using clang-extract

$ cat ~/klp/livepatches/lp_cmdline/ce/linux/lp/livepatch_lp_cmdline.c

#include <linux/fs.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/refcount.h>
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/binfmts.h>
#include <linux/sched/coredump.h>
#include <linux/sched/task.h>
#include <linux/mm.h>

/** clang-extract: from fs/proc/internal.h:31:1 */
struct proc_dir_entry;/* Full definition was removed. */

klp-build - code extracted using clang-extract

/** clang-extract: from fs/proc/cmdline.c:8:1 */
int klpp_cmdline_proc_show(struct seq_file *m, void *v)
{

seq_printf(m, "%s patched=1\n", saved_command_line);
return 0;

}

#define KLP_RELOC_SYMBOL_POS(LP_OBJ_NAME, SYM_OBJ_NAME, SYM_NAME, SYM_POS) \
 asm("\".klp.sym.rela." #LP_OBJ_NAME "." #SYM_OBJ_NAME "." #SYM_NAME "." #SYM_POS "\"")
#define KLP_RELOC_SYMBOL(LP_OBJ_NAME, SYM_OBJ_NAME, SYM_NAME) \
 KLP_RELOC_SYMBOL_POS(LP_OBJ_NAME, SYM_OBJ_NAME, SYM_NAME, 0)

extern char *saved_command_line KLP_RELOC_SYMBOL(vmlinux, vmlinux, saved_command_line);

klp-build - code extracted using clang-extract
#include <linux/livepatch.h>
static struct klp_func vmlinux_funcs[] = {

{
.old_name = "cmdline_proc_show",
.new_func = klpp_cmdline_proc_show,

}, {}
};

static struct klp_object objs[] = { {

 .funcs = vmlinux_funcs

 }, {}
};

klp-build - code extracted using clang-extract
static struct klp_patch patch = {

.mod = THIS_MODULE,

.objs = objs,
};

static int livepatch_lp_cmdline_init(void)
{

return klp_enable_patch(&patch);
}

static void livepatch_lp_cmdline_cleanup(void)
{
}
module_init(livepatch_lp_cmdline_init);
module_exit(livepatch_lp_cmdline_cleanup);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");

klp-build - final livepatch module

$ cd ~/klp/livepatches/lp_cmdline/ce/linux/lp/

$ make

$ ls

livepatch_lp_cmdline.c … livepatch_lp_cmdline.mod.c livepatch_lp_cmdline.ko

klp-build - testing the livepatch

$ cat /proc/cmdline

virtme_hostname=virtme-ng nr_open=1048576 …

$ insmod ./livepatch_lp_cmdline.ko
$ cat /proc/cmdline

virtme_hostname=virtme-ng nr_open=1048576 … patched=1

$ echo 0 >/sys/kernel/livepatch/livepatch_lp_cmdline/enabled

$ cat /proc/cmdline

virtme_hostname=virtme-ng nr_open=1048576 …

Important!

● klp-build is still under heavy development

○ Expect subcommands and other arguments to change soon

○ Always check the latest version on https://github.com/SUSE/klp-build

● Same applies to clang-extract

○ Fixes are applied frequently

○ Always check the latest version on https://github.com/SUSE/clang-extract

https://github.com/SUSE/klp-build
https://github.com/SUSE/clang-extract

kpatch

kpatch

● Homepage: https://github.com/dynup/kpatch/
● Multi-distro support: RHEL, Amazon Linux, OpenEuler, Anolis OS, Ubuntu, and others
● Multi-arch support: x86_64, ppc64le, s390x
● Converts a .patch file into a livepatch kernel object .ko

○ Builds a reference kernel with new options --ffunction-sections and --fdata-sections
○ Builds a patched kernel (with same options)
○ Performs a binary comparison of the builds, extracts new and modified parts into a new .o

object file
○ Adds boilerplate code to “wire” it up and writes a kernel object .ko

https://github.com/dynup/kpatch/

kpatch utility command

● kpatch install / uninstall - copies livepatch .ko to /var/lib/kpatch/<kernel-version> and
enables kpatch systemd service to load it on boot

● kpatch build - create a livepatch .ko from a .patch

● kpatch load / unload - load or unload a livepatch .ko on a running system

● kpatch list - list installed and loaded kpatches

kpatch-build: organized elves

GCC build option --ffunction-sections separates functions into their own ELF object file section:

source .c file
void functionA(void) { ... }

void functionB(void) { ... }

void functionC(void) { ... }

object code .o file
.text.functionA [PROGBITS]

 [... functionA code ...]

.text.functionB [PROGBITS]

 [... functionB code ...]

.text.functionC [PROGBITS]

 [... functionC code ...]

kpatch-build: “easy” as 1-2-3

1010 1101

1100 0101

0010 1111

kernel object

1010 1101

0010 0111

0010 1111

0000 1010

kernel object

functionA()

functionB() 0010 0111

0000 1010

boilerplate

livepatch.ko

kernel build
(reference)

1
kernel build

(patched)

2
kpatch build

(livepatch API + ∆code)

3

kpatch-build: setup

● Create a VM, container, or grab a test box

● Install and boot desired target kernel
○ Requires target kernel source
○ Kernel debuginfo packages or kernel build tree

● Install kpatch-build dependencies and build the utility:
○ make dependencies && \ # may need customization for new distros

 make -j$(nproc) && \

 make install

kpatch-build: example build invocation

● Build an example kpatch:
$ kpatch-build/kpatch-build --debug \

 ~/kpatch-git/examples/cmdline-string.patch

● Go grab a coffee and walk the dog! The --debug flag will enable
verbose output and also
leave intermediate kernel
object files … perfect for

“priming” a system for more
kpatch builds!

kpatch-build: examples/cmdline.patch

Adds a “kpatch” string to /proc/cmdline, replacing seq_put{s,c}() calls with seq_printf():

diff -Nupr src.orig/fs/proc/cmdline.c src/fs/proc/cmdline.c

--- src.orig/fs/proc/cmdline.c 2022-10-24 15:41:08.858760066 -0400

+++ src/fs/proc/cmdline.c 2022-10-24 15:41:11.698715352 -0400

@@ -6,8 +6,7 @@

 static int cmdline_proc_show(struct seq_file *m, void *v)

 {

- seq_puts(m, saved_command_line);

- seq_putc(m, '\n');

+ seq_printf(m, "%s kpatch=1\n", saved_command_line);

 return 0;

 }

kpatch-build: example build output

(kpatch.git) $./kpatch-build/kpatch-build --skip-cleanup \

 examples/cmdline-string.patch

Skipping cleanup

RHEL distribution detected

Downloading kernel source for 5.14.0-284.48.1.el9_2.x86_64

Unpacking kernel source

Testing patch file(s)

Reading special section data

Building original source

Building patched source

Extracting new and modified ELF sections

cmdline.o: changed function: cmdline_proc_show

Patched objects: vmlinux

Building patch module: livepatch-cmdline-string.ko

SUCCESS

Affected object code
function(s)

Affected objects:
module(s) and/or

vmlinux

Final status:
success or fail

kpatch-build: kpatch-build filesystem output (abridged)

$ tree ~/.kpatch/

├── build.log < kpatch-build log file

├── tmp/
│ ├── orig/ < original kernel build object files (step 1)

│ │ └── fs/
│ │ └── proc/
│ │ └── cmdline.o
│ ├── patched/ < patched kernel build object files (step 2)

│ │ └── fs/
│ │ └── proc/
│ │ └── cmdline.o
│ └── output/ < extracted differences from original vs. patched (step 3)

│ └── fs/
│ └── proc/
│ └── cmdline.o
├── patch/... < files for building output livepatch.ko module

└── src/... < kernel source tree used for kernel builds

kpatch-build: original cmdline_proc_show()

0000000000000000 <cmdline_proc_show>:

 0: e8 00 00 00 00 callq 5 <cmdline_proc_show+0x5>

 1: R_X86_64_PLT32 __fentry__-0x4

 5: 55 push %rbp

 6: 48 8b 35 00 00 00 00 mov 0x0(%rip),%rsi

 9: R_X86_64_PC32 saved_command_line-0x4

 d: 48 89 fd mov %rdi,%rbp

 10: e8 00 00 00 00 callq 15 <cmdline_proc_show+0x15>

 11: R_X86_64_PLT32 seq_puts-0x4

 15: 48 89 ef mov %rbp,%rdi

 18: be 0a 00 00 00 mov $0xa,%esi

 1d: e8 00 00 00 00 callq 22 <cmdline_proc_show+0x22>

 1e: R_X86_64_PLT32 seq_putc-0x4

 22: 31 c0 xor %eax,%eax

 24: 5d pop %rbp

 25: e9 00 00 00 00 jmpq 2a <cmdline_proc_show+0x2a>

 26: R_X86_64_PLT32 __x86_return_thunk-0x4

Original object code

Note the calls to
seq_puts() and

seq_putc()

kpatch-build: patched cmdline_proc_show()

0000000000000000 <cmdline_proc_show>:

 0: e8 00 00 00 00 callq 5 <cmdline_proc_show+0x5>

 1: R_X86_64_PLT32 __fentry__-0x4

 5: 48 8b 15 00 00 00 00 mov 0x0(%rip),%rdx

 8: R_X86_64_PC32 saved_command_line-0x4

 c: 48 c7 c6 00 00 00 00 mov $0x0,%rsi

 f: R_X86_64_32S .rodata.cmdline_proc_show.str1.1

 13: e8 00 00 00 00 callq 18 <cmdline_proc_show+0x18>

 14: R_X86_64_PLT32 seq_printf-0x4

 18: 31 c0 xor %eax,%eax

 1a: e9 00 00 00 00 jmpq 1f <cmdline_proc_show+0x1f>

 1b: R_X86_64_PLT32 __x86_return_thunk-0x4

Patched object code

Note the new call to
seq_printf()

kpatch: testing livepatch-cmdline-string.ko

$ kpatch load livepatch-cmdline-string.ko

loading patch module: livepatch-cmdline-string.ko

waiting (up to 15 seconds) for patch transition to complete...

transition complete (2 seconds)

$ cat /proc/cmdline

BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-427.34.1.el9_4.x86_64 [... snip ...] kpatch=1

$ kpatch unload livepatch-cmdline-string.ko

disabling patch module: livepatch_cmdline_string

waiting (up to 15 seconds) for patch transition to complete...

transition complete (2 seconds)

unloading patch module: livepatch_cmdline_string

$ cat /proc/cmdline

BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-427.34.1.el9_4.x86_64 [... snip ...]

kpatch-build: just because the kernel builds …

• Successful kernel builds do NOT imply a successful kpatch build!
– For example, changing data and related sections like:

diff -Nupr src.orig/fs/proc/kmsg.c src/fs/proc/kmsg.c

---- src.orig/fs/proc/kmsg.c 2022-10-24 15:41:08.858760066 -0400

+++ src/fs/proc/kmsg.c 2022-10-24 15:41:11.698715352 -0400

@@ -55,7 +59,7 @@ static const struct proc_ops kmsg_proc_ops = {

 .proc_poll = kmsg_poll,

 .proc_open = kmsg_open,

 .proc_release = kmsg_release,

- .proc_lseek = generic_file_llseek,

+ .proc_lseek = kpatch_llseek,

 };

 static int __init proc_kmsg_init(void)

ERROR: kmsg.o: 1 unsupported
section change(s)

create-diff-object:
unreconcilable difference
kmsg.o: changed section

.rela.rodata.kmsg_proc_ops
not selected for inclusion

kpatch-build: just because the kpatch builds …

• Successful kpatch builds do NOT imply a safe livepatch!
– For example, consider a kpatch that:

• Modifies functions that allocate struct foo with a
new structure definition

• Modifies all code to use foo’s new definition
– This may build a livepatch.ko, but:

• Does not consider pre-existing instances of foo
(before the livepatch loads)

• Is not safe to unload, as it exposes the original kernel
code to new struct foo layout (after the livepatch unloads)

Here we go …

kpatch-build: endless binary comparison …

• For better or worse, kpatch-build will try to compare
all binary changes. Changes to header files will cause
all its includers to rebuild and force comparison.

diff -Nupr src.orig/include/linux/kernel.h src/include/linux/kernel.h

--- src.orig/include/linux/kernel.h 2022-10-24 15:41:08.858760066 -0400

+++ src/include/linux/kernel.h 2022-10-24 15:41:11.698715352 -0400

@@ -25,6 +25,7 @@

 #include <uapi/linux/kernel.h>

+#define KPATCH_VALUE 12345

 #define STACK_MAGIC 0xdeadbeef

 /**

Cscope says there
are over 9000 source

files #including
linux/kernel.h !!!

kpatch Patch Author Guide

https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md

● Patch analysis
● kpatch vs livepatch vs kGraft
● Patch upgrades
● Data structure changes
● Data semantic changes
● Init code changes
● Header file changes
● Dealing with unexpected changed

functions

● Removing references to static local
variables

● Code removal
● Once macros
● inline implies notrace
● Jump labels and static calls
● Sibling calls
● Exported symbol versioning
● System calls

https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#patch-analysis
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#kpatch-vs-livepatch-vs-kgraft
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#patch-upgrades
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#data-structure-changes
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#data-semantic-changes
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#init-code-changes
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#header-file-changes
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#dealing-with-unexpected-changed-functions
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#dealing-with-unexpected-changed-functions
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#removing-references-to-static-local-variables
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#removing-references-to-static-local-variables
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#code-removal
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#once-macros
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#inline-implies-notrace
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#jump-labels-and-static-calls
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#sibling-calls
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#exported-symbol-versioning
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#system-calls

Livepatch creation best practices

● Minimize livepatch-sets to focus on the problem at hand
● Try using cumulative livepatches (one big patch) instead of stacked

(multiple) livepatches
● Not every upstream patch is reasonable to convert to a livepatch
● Carefully read the documentation in the previous slide and

docs.kernel.org

http://docs.kernel.org

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

