
Simplify Your K8s
Connectivity with
NGINX Gateway Fabric
Cody Green – Sr. Dir. Global Solution Architects
Mike Stefaniak – Sr. Product Manager
October 22nd, 2024

© 2024 F52

Agenda

Introduction

Kubernetes Gateway API Overview

Introduction to NGINX Gateway Fabric

Demonstration

Q&A

©2024 F53

Introduction

© 2024 F54

Security Scalability Complexity

Traffic Management Challenges

© 2024 F55

Application Architecture and Deployment Models

• Automates deployment and

management of containerized

workloads and services at scale

• Deployment

• Scaling

• Rollouts / Rollbacks

• Self-healing

• De facto standard for deploying

microservices

© 2024 F56

Applications in Kubernetes

• Pods
• Containers run workloads on nodes in a

Kubernetes cluster

• Services
• A logical grouping of pods that perform the

same function

• Ingress
• How to access a set of Pods via a L7 load

balancer (Hostname, URI)

© 2024 F57

Exposing Apps in Kubernetes

Small, static deployments Scalable, dynamic deployments

© 2024 F58

Connection timeouts
and errors

Insufficient visibility into
app health and performance

Difficulties with securing
distributed app environments

Limited governance and
self-service capabilities

Increasing complexity
and tool sprawl

Poor user
experiences

Troubleshooting difficulties
and downtime

Increased risk of
cyberthreat exposure

Slow app releases
for developers

Hard to operate, manage,
and troubleshoot

Challenges with Running Kubernetes in Production
Across hybrid, multi-cloud environments with disaggregated technologies

© 2024 F59

Unique Ingress Controllers
Companies like NGINX release their own Ingress Controllers to address the challenges

Enterprise-class

Secure end-to-end

Infrastructure-agnostic

(Kubernetes-native)

© 2024 F510

Ingress Controller Limitations

Governance

The Ingress API does not separate
responsibilities to allow platform
operation teams and developers to
configure only the components
relevant to their scope of control.

While NGINX implemented a unique
solution to this problem, the lack of
a shared standard among Ingress
providers remains a significant
issue.

Limited Extensibility

The Ingress API has limited
functionality for configuring
advanced traffic routing.

This led vendors to implement their
own unique API extensions, many in
the form of custom resource
definitions CRDs), to add needed
functionality.

This also plagued new use cases
targeted at Ingress controllers.

Service Mesh

While service meshes like Istio
tried to fill some of these gaps, the
significant complexity and
operational overhead have limited
their widespread adoption.

©2024 F511

Kubernetes Gateway API
Overview

© 2024 F512

A Collection of Resources

• Models service networking in Kubernetes

• Works in collaboration with the Service resource

NOT an Implementation

• Only a standard to configure Gateway API features

• An implementation is responsible for all functionality

• The implementation decides what is deployed

The Gateway API

© 2024 F513

Redefining the Traditional “Ingress” Resource

• Managing "ingress" traffic (North/South)

• In-cluster traffic handled by GAMMA (East/West)

Managed by the SIG-NETWORK Community

• Kubernetes Network Special Interest Group

• Responsible for networking features of Kubernetes

• Competition collaborates to define broad standards

The Gateway API

© 2024 F514

Solving the Problems from the Ingress API

Expression

Problem: Annotations everywhere

Gateway API's Solution:

• Core support for traffic policies

without custom annotations

• Can change your

implementation with the same

configuration

Role Orientation

Problem: Access is all or nothing

Gateway API's Solution:

• Divide API resources by

organizational role

• Engineers only deal with

resources they care about

Extensibility

Problem: Custom annotations

Gateway API's Solution:

• New features can be built
from extension points

• Support levels for optional
features:

• Core

• Extended

• Implementation-specific

© 2024 F515

GatewayClass
Infrastructure provider

• Defines what implementations are available in the cluster

Gateway
Cluster operator

• A definition for some infrastructure to be created

Role-oriented Object Design

© 2024 F516

Role-oriented Object Design

Routes (HTTP, TCP, TLS, UDP, gRPC)
Application developer

• Defines routing behavior from a Gateway to an application

via Kubernetes services

© 2024 F517

Role-oriented Object Design

GatewayClass
Infrastructure provider

• Defines what implementations are available in the cluster

Gateway
Cluster operator

• A definition for some infrastructure to be created

Routes (HTTP, TCP, TLS, UDP, gRPC)
Application developer

• Defines routing behavior from a Gateway to an application

via Kubernetes services

©2024 F518

Introduction to
NGINX Gateway Fabric

© 2024 F519

What is NGINX Gateway Fabric?

The Gateway API powered by NGINX

• Optimal performance and reliability

• All traffic processing is handled by
native NGINX or official modules.

A Stand-alone Gateway API Product

• All functionality expressed through
Gateway API

• NGINX directives via extensions and
attachments

• Snippet functionality for any directive
not yet “first-class”

© 2024 F520

NGINX Gateway Fabric leverages core Gateway API features and NGINX capabilities

Scenarios and Use Cases

OpenID
Connect

TLS
encryption

"Zero-downtime"
deployment

strategies

NGINX
Snippets

Observability

Attribute-based
routing

Weight-
based Load
balancing

HTTP redirects,
rewrites, header

modification

WAF
Protection

Access
Control

Roadmap

Secure App to
App Traffic

Egress
Controls

©2024 F521

Demo

© 2024 F522

NGINX in Kubernetes

NGINX Gateway Fabric

• Implements the Gateway API

• Next generation of Ingress

• Stand-alone product built for the Gateway API

NGINX Ingress Controller

• Implements the Ingress API

• Mature product with 7 years of development

• With community version, near ubiquitous use

within Kubernetes clusters

The front door to your Kubernetes applications

© 2024 F523

Distributed tracing

Manage NGINX instances with a SaaS-based Console or via APIs
• Get actionable insights

and recommendations
• Monitor performance,

uptime, and security
instantly

• Integrate with your
preferred tool via
our easy-to-use API
and OTel

Monitoring and alerting Analytics and visualization

NGINX Instance Manager

© 2024 F524

Q&A

	Slide 1: Simplify Your K8s Connectivity with NGINX Gateway Fabric
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Traffic Management Challenges
	Slide 5: Application Architecture and Deployment Models
	Slide 6: Applications in Kubernetes
	Slide 7: Exposing Apps in Kubernetes
	Slide 8: Challenges with Running Kubernetes in Production
	Slide 9: Unique Ingress Controllers
	Slide 10: Ingress Controller Limitations
	Slide 11: Kubernetes Gateway API Overview
	Slide 12: The Gateway API
	Slide 13: The Gateway API
	Slide 14: Solving the Problems from the Ingress API
	Slide 15: Role-oriented Object Design
	Slide 16: Role-oriented Object Design
	Slide 17: Role-oriented Object Design
	Slide 18: Introduction to NGINX Gateway Fabric
	Slide 19: What is NGINX Gateway Fabric?
	Slide 20: Scenarios and Use Cases
	Slide 21: Demo
	Slide 22: NGINX in Kubernetes
	Slide 23: Manage NGINX instances with a SaaS-based Console or via APIs
	Slide 24
	Slide 25

