5

Simplify Your K8s
Connectivity with
NGINX Gateway Fabric

Cody Green - Sr. Dir. Global Solution Architects
Mike Stefaniak - Sr. Product Manager
October 227, 2024

Agenda

Introduction

Kubernetes Gateway API Overview
Introduction to NGINX Gateway Fabric
Demonstration

Q&A

2 ©2024F5

Introduction

Traffic Management Challenges

Security Scalability

Complexity

Application Architecture and Deployment Models

Release
Q mysaL | 0
- ADAPTER

REST

API
_.:

WEB
ul

@ Meevrenannecd STRIPE | . .. o
ADAPTER

TWILIO
ADAPTER

SENDGRID
ADAPTER

DRIVER
WEB Ul

MANAGEMENT

REST
API TRIP

API
NOTIFICATION

App

Container

App

Container

Traditional Deployment Virtualized Deployment Container Deployment

5 ©2024F5

10
AAAAAA

« Automates deployment and
management of containerized
workloads and services at scale

» Deployment

« Scaling
 Rollouts / Rollbacks
» Self-healing

» De facto standard for deploying
microservices

Applications in Kubemetes

Traffic * Pods
L Containers run workloads on nodes in a
Kubernetes cluster
\Loaé Rolancer
e Services
7 * A logical grouping of pods that perform the

. same function
Service

* Ingress

IO
* How to access a set of Pods viaa L7 load
balancer (Hostname, URI)

Kubernetes cluster

6 ©2024F5 @

Exposing Apps in Kubemetes

Small, static deployments Scalable, dynamic deployments

Kubernetes Cluster

Deploying a Load Balancer in

Exposing Services with a
Front of Ingress Controllers

Load Balancer and NodePort

Kubernetes Cluster

NodePort Service

Service:

33.3%>

Service:

Service:

sssssesssssssssessesssssnesnnnesnnn

3
H Pine port: 30001 gy Service: Service: Service: Pine Lagoon Deep Lake
i Lagoon port: 30002 Pine Lagoon Deep Lake
3 Deep Lake port: 30003
- NodePort Service A @ = .(% e —< Service: Service: Service:
—_— — - Pine port: 30001 OB Scrvice: Service: Service: Pine Lagoon Deep Lake
i Lagoon port: 30002 ° Pine Lagoon Deep Lake
: Deep Lake port: 30003 Client Load Ingress
Client Load : Request to Balancer Controller
Request fo Balancer : J color.com on port 80) por!]&&
pine.color.com port 80 g port 80 - ,Ene.co lor
. - lagoon.color
on port 80 . - deeplake.color

o The client is programmed with the service
IP address and the load balancer port.

o The load balancer guarantees traffic
distributes across nodes.

o Load balancing within Kubernetes is not
possible so traffic is distributed randomly,
causing service overload and port exhaustion.

7 ©2024F5

NodePort Service

Pine port: 30001
Lagoon port: 30002
Deep Lake port: 30003

35%—

Service:
Pine

Service:

Lagoon

s sse e s It eNeNEEsEsEsRseNssENRRERERsERRERRRERRRBRRRBEREST

N

o The load balancer distributes traffic
across Ingress pods.

e The Ingress controller guarantees
traffic distributes across nodes
and services.

Service:

Service:
Lagoon

ssssssssessssans

D

Challenges with Running Kubernetes in Production

Across hybrid, multi-cloud environments with disaggregated technologies

Connection timeouts
and errors

Insufficient visibility into
app health and performance

Difficulties with securing
distributed app environments

Limited governance and
self-service capabilities

Increasing complexity
and tool sprawl

8 ©2024F5

NN

Poor user
experiences

Troubleshooting difficulties
and downtime

Increased risk of
cyberthreat exposure

Slow app releases
for developers

Hard to operate, manage,
and troubleshoot

Unique Ingress Controllers

Companies like NGINX release their own Ingress Controllers to address the challenges

. EEE Kubernetes é@:}

Servic? Enterprise-class

o@ : Secure end-to-end
© NGINXIngress
Clients : Controller with : Sarnees E—— :
© NGINX App Protect : : 6}
Pod Pod \
(ave) | (e Infrastructure-agnostic

(Kubernetes-native)

9 ©2024F5 @

Ingress Controller Limitations

Limited Extensibility

The Ingress API has limited
functionality for configuring
advanced traffic routing.

This led vendors to implement their
own unigue APl extensions, many in
the form of custom resource
definitions CRDs), to add needed
functionality.

This also plagued new use cases
targeted at Ingress controllers.

10 ©2024F5

Governance

The Ingress APl does not separate
responsibilities to allow platform
operation teams and developers to
configure only the components
relevantto their scope of control.

While NGINX implemented a unique
solution to this problem, the lack of
a shared standard among Ingress
providers remains a significant
issue.

Service Mesh

While service meshes like Istio
tried to fill some of these gaps, the
significant complexity and
operational overhead have limited
their widespread adoption.

Kubernetes Gateway API
Overview

111111111

The Gateway API

A Collection of Resources
* Models service networking in Kubernetes

* Works in collaboration with the Service resource

NOT an Implementation
* Only astandard to configure Gateway APl features

* Animplementation is responsible for all functionality

* The implementation decides whatis deployed

12 ©2024F5

The Gateway API

Redefining the Traditional “Ingress” Resource
* Managing "ingress" traffic (North/South)

* In-cluster traffic handled by GAMMA (East/West)

Managed by the SIG-NETWORK Community
* Kubernetes Network Special Interest Group
* Responsible for networking features of Kubernetes

* Competition collaborates to define broad standards

13 ©2024F5

Solving the Problems from the Ingress API

Role Orientation Expression Extensibility
Problem: Access is all or nothing Problem: Annotations everywhere Problem: Custom annotations
Gateway API's Solution: Gateway API's Solution: Gateway API's Solution:
« Divide API resources by « Core support for traffic policies * New features can be built
organizational role without custom annotations from extension points
« Engineers only deal with « Can change your » Support levels for optional
resources they care about implementation with the same features:
configuration . Core
* Extended

 Implementation-specific

14 ©2024F5 @

Role-oriented Object Design

GatewayClass
7N
o A
| | | _ A
 Defines whatimplementations are available in the cluster 00
M ovider

Gateway
N
%o
e Adefinition for some infrastructure to be created Oupgfé?c:r

15 ©2024F5

Role-oriented Object Design

B HTTPROUTE | | HTTPROUTE g
Routes (HTTP, TCP, TLS, UDP, gRPC) KQ 0
- Defines routing behavior from a Gateway to an application ~ fgbeaten fAmd
via Kubernetes services 0 T) I

SERVICE SERVICE SERVICE

16 ©2024F5 @

Role-oriented Object Design

GatewayClass — IS
/’D\ [)
(e} A H :
| | | s B
 Defines whatimplementations are available in the cluster 0 ol ‘
M ovider

Gateway BN CATEWAY s
N
B &
* Adefinition for some infrastructure to be created OCIpléfé?(:r

B HTTPROUTE | | HTTPROUTE g
Routes (HTTP, TCP, TLS, UDP, gRPC) KQ 0
- Defines routing behavior from a Gateway to an application ~ fgbeaten fAmd
via Kubernetes services 0 T) I

SERVICE SERVICE SERVICE

17 ©2024F5 @

Introduction to
NGINX Gateway Fabric

What is NGINX Gateway Fabric?

e Gateway AP powared by NGINX \ [, S —

3 4 2
Cluster e :
* Optimal performance and reliability Opergtor HITERouta A S]
\& : a.example.com :
APL e TR R
* Alltraffic processing is handled by - Kubernetes L BN
. .. Application © PodA Pod A
native NGINX or official modules. Developer A T ____ I Bt Attaches
J .
A Stand-alone Gateway APl Product ; m— T
Application NGINX) g :]
. . : Gateway Fabric Pod i List P e—
« All functionality expressed through Doveloper : - cxamplecon <_]'_]
Gateway API C’;)Iral::I - Attaches
. . . . —— http://a.example.com HTTPRoute B]_J
* NGINX directives via extensions and Degimplecon ;

attachments

. —hnp://b.example.comj
* Snippet functionality for any directive

Clients B : Namespace: nginx-gateway Namespace: applications

E |
oint : Plane || > i |)

S 41_) Public | NGINX | ———) | | o
ients Entry | ———————> | Data O
P

not yet “first-class”

19 ©2024F5 @

Scenarios and Use Cases

NGINX Gateway Fabric leverages core Gateway API features and NGINX capabilities

L

Roadmap

sfa)s

Attribute-based HTTP redirects, "Zero-downtime"
routing rewrites, header deployment OpenlID l;] Egress
e - Connect Controls
modification strategies H o

. o Weég[\t- g <>> Secure App to

el_ ased Loa App Traffic \ | |
_ 010011 balancing 0]
9' 101010 /1

Observability Access TLS NGINX WAF
Control encryption Snippets Protection

20 ©2024F5 @

Demo

21 ©2024 F5

NGINX in Kubernetes

The front door to your Kubernetes applications

=

NGINX Ingress Controller
* Implements the Ingress API
« Mature product with 7 years of development

« With community version, near ubiquitous use
within Kubernetes clusters

22 ©2024F5

@

NGINX Gateway Fabric

* Implements the Gateway API
* Next generation of Ingress

« Stand-alone product built for the Gateway API

Manage NGINX instances with a SaaS-based Console orvia APls

* Get actionable insights
and recommendations

* Monitor performance,
uptime, and security
instantly

* Integrate with your
preferred tool via
our easy-to-use API
and OTel

23 ©2024F5

m NGINX Dashboard
NGINX One
Availability NGINX Versions
g5 Overview : Instan Across Instar
]
Manage
Instances

Data Plane Keys

® 1253
W NGINX Plus R31

® Onine 6 1142

] 1 MGINX Plys 831 91
Unavaiabis 0 uneporteg

Configuration Recommendations CVEs

23 Total Recommendations 6 Total oves

Recommendation Types Across Instances GVE Severity Across Instances

® pgior

i E

dium

Support
Refresh
Operating Systems Certificates
& Toral Operating Systems 4 Toral centficates
—
Certiticate Status Across Instances
» vaig
CPU Utilization Last 1 hour
Top 10 Instances by CPU Utilization
9%
401%
3945
366%
o
3a8%
345
1
3345
o
See Al

220 req/s

Analytics and visualization

14 Traces

Compare traces by selecting result items

roviees vt cgex comng tevenes 1 G880R6448-5012)

roviews v1.ngax_ecomng tevews-v1 S88EILS 529

Monitoring and alerting

®

Qo

nstance Masages

NGINX Instance Manager

“«

O Enable query history

Expression (press Shift+Enter for newlines)

Graph

d nginx_ingress_controller_nginx_last_reload_status

Element

- insert metric at cursor -

- insert metric at cursor -

nginx_ingress_controller_ingress_resources_total
nginx_ingress_controller_nginx_last_reload_milliseconds

nginx_ingress_controller_nginx_reload_errors_total
nginx_ingress_controller_nginx_reloads_total
nginx_ingress_controller_nginx_worker_processes_total

Distributed tracing

24 ©2024F5

	Slide 1: Simplify Your K8s Connectivity with NGINX Gateway Fabric
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Traffic Management Challenges
	Slide 5: Application Architecture and Deployment Models
	Slide 6: Applications in Kubernetes
	Slide 7: Exposing Apps in Kubernetes
	Slide 8: Challenges with Running Kubernetes in Production
	Slide 9: Unique Ingress Controllers
	Slide 10: Ingress Controller Limitations
	Slide 11: Kubernetes Gateway API Overview
	Slide 12: The Gateway API
	Slide 13: The Gateway API
	Slide 14: Solving the Problems from the Ingress API
	Slide 15: Role-oriented Object Design
	Slide 16: Role-oriented Object Design
	Slide 17: Role-oriented Object Design
	Slide 18: Introduction to NGINX Gateway Fabric
	Slide 19: What is NGINX Gateway Fabric?
	Slide 20: Scenarios and Use Cases
	Slide 21: Demo
	Slide 22: NGINX in Kubernetes
	Slide 23: Manage NGINX instances with a SaaS-based Console or via APIs
	Slide 24
	Slide 25

