

Designing Custom Linux Schedulers
with sched_ext

Andrea Righi, Principal Software Engineer, NVIDIA

Introduction and Agenda
• Scheduling
• sched_ext
• Hands-on

Scope and Expectations
• Become familiar with the sched_ext API
• Being able to craft you own BPF scheduler

Scheduling

What is a scheduler?

• Kernel component that determines
– Where each task needs to run
– When each task needs to run
– How long each task needs to run

Goals

• Fairness
– All tasks should receive a fair share of the CPU time

• Optimization
– Make optimal use of system resources

• Low overhead
– Scheduler should run as fast as possible

• Generalization
– Scheduler should work on all architectures for every workload

Scheduling in Linux

• One scheduler to rule them all
– CFS < v6.6
– EEVDF >= v6.6

• Really difficult to conduct experiments
• Really difficult to upstream changes

sched_ext

• Technology in the Linux kernel that allows
implementing scheduling policies as BPF programs

• Key features
– Design custom schedulers
– Rapid experimentation
– Safety (you can’t crash the kernel + watchdog)
– Lower the barrier of scheduling development

Proportional weight-based CPU allocation: fairness

• Each task Ti has a weight wi
• The runtime assigned to each task Ti is proportional to its weight wi divided

by the sum of all the runnable tasks’ weight

Example: 2 tasks w0 = 1, w1 = 1

Example: 2 tasks w0 = 1, w1 = 1

50%

50%

Example: 2 tasks w0 = 3, w1 = 1

Example: 2 tasks w0 = 3, w1 = 1

75%

25%

How this is implemented: virtual runtime (vruntime)

• Charge each task a runtime proportional to wbase and inversely proportional
to its weight wi (vruntime)

• Traditionally wbase = 100
• Tasks are scheduled in order of increasing vruntime

EEVDF: Earliest Eligible Virtual Deadline First

• Lag: difference between the ideal runtime and the actual runtime of a task
• Eligibility: a task is eligible to run if its lag is >= 0
• Virtual deadline: vruntime + requested vruntime

sched_ext

sched_ext implementation

• New scheduling policy (SCHED_EXT) that runs below the fair sched class
• When a BPF scheduler is loaded, all fair sched class tasks are moved to

SCHED_EXT
– Partial mode: tasks must be explicitly moved to the SCHED_EXT class

via sched_setscheduler()
• sched_ext invokes BPF callbacks via struct_ops: ops.*()
• When a BPF scheduler exits, all SCHED_EXT tasks are moved back to the

fair class

Scheduling classes and policies in Linux

• dl_sched_class
– SCHED_DEADLINE

• rt_sched_class
– SCHED_FIFO, SCHED_RR

• fair_sched_class
– SCHED_NORMAL, SCHED_BATCH

• ext_sched_class
– SCHED_EXT <= Your BPF program runs here!

• Idle_sched_class:
– SCHED_IDLE

Kernel ⇔ kernel ABI

• No UAPI restrictions
– Linux can’t break user space => ABI restrictions
– BPF is not user space => kernel-to-kernel ABI
– BPF struct_ops => trigger callbacks in BPF

• BPF program shares address space with user space
– User space task can access BPF address space
– Use BPF to communicate between BPF and user-space

• BPF program must be GPLv2

User-space scheduling (Rust, Java, …)

BPF scheduler implementation

SCX_OPS_DEFINE(vder_ops,
 .select_cpu = (void *)vder_select_cpu,
 .enqueue = (void *)vder_enqueue,
 .dispatch = (void *)vder_dispatch,
 .runnable = (void *)vder_runnable,
 .running = (void *)vder_running,
 .stopping = (void *)vder_stopping,
 .quiescent = (void *)vder_quiescent,
 .enable = (void *)vder_enable,
 .init_task = (void *)vder_init_task,
 .cpu_release = (void *)vder_cpu_release,
 .init = (void *)vder_init,
 .exit = (void *)vder_exit,
 .timeout_ms = 5000,
 .name = "vder");

DSQ (Dispatch queue)

• SCX_DSQ_LOCAL: one on each CPU
• SCX_DSQ_LOCAL_ON | cpu: local DSQ of a target CPU
• SCX_DSQ_GLOBAL: global DSQ
• User-defined DSQs: custom DSQs

DSQs

CPU 0

CPU 1

…

CPU N

SCX_LOCAL_DSQ

SCX_LOCAL_DSQ

SCX_LOCAL_DSQ

SCX_GLOBAL_DSQ

…

scx_bpf_dsq_move_to_local()

User DSQ

ops.dispatch()

DSQ workflow

• Tasks are always executed in FIFO order from the local DSQ of each CPU
• Every time resched_curr() is called and the current task’s time slice is zero,

a new task is consumed:
– If the local DSQ is empty, the first task from the built-in global DSQ is

moved to the local DSQ
– Otherwise, ops.dispatch() is called and we can consume tasks from

user DSQs via scx_bpf_dsq_move_to_local()

FIFO vs priority DSQ

• Built-in DSQs can only be used as FIFO
• User-defined DSQs can be used either as FIFO or priority

(in a mutually exclusive way)

DSQ methods

• scx_bpf_dsq_insert(): insert a task to a DSQ (used as FIFO)
• scx_bpf_dsq_insert_vtime(): insert a task to a DSQ (used as priority)
• scx_bpf_dsq_nr_queued(): return the number of tasks in the DSQ
• scx_bpf_dsq_move_to_local(): pop the first task from a user DSQ and

move it to the current CPU’s local DSQ
• scx_bpf_create_dsq(): create a new user DSQ

Task lifecycle

• ops.init_task(): a new task is created
• ops.enable(): enable BPF scheduling for a task
• ops.select_cpu(): called on task wakeups (optimization)
• ops.runnable(): task becomes ready to run
• ops.enqueue(): task is added to the scheduler (skipped if already dispatched)
• ops.running(): task starts running on its assigned CPU
• ops.tick(): called every 1/HZ seconds
• ops.stopping(): task stops running on its assigned CPU
• ops.quiescent(): task releases its assigned CPU (wait)
• ops.disable(): disable BPF scheduling for a task
• ops.exit_task(): a task is destroyed

ops.init_task()
ops.enable_task()

while (is_sched_ext_task(p)) {
 if (task_can_migrate(p))
 ops.select_cpu();

 ops.runnable();
 while (!is_task_blocked()) {
 if (!is_task_dispatched())
 ops.enqueue();
 ops.running();
 ops.tick();
 ops.stopping();
 }
 ops.quiescent();
}

ops.disable_task(()
ops.exit_task()

← Task workflow

Task properties

• Mutable attributes:
– p->scx.slice: task time slice in ns, decremented every tick, if zero

resched_curr() is called
– p->scx.dsq_vtime: defines the position of a task in a priority DSQ
– p->scx.disallow: exclude the task from SCHED_EXT

• Immutable attributes
– p->scx.weight: task’s weight (priority) in the range [1 … 10000], where

100 is the default

CPU callbacks

• ops.dispatch(): a CPU is ready to dispatch a task
– If a task is moved to the local DSQ, it will be executed on the CPU
– If the current task time slice is refilled, the task will continue to run on the CPU
– If no action is done, the CPU goes idle

• ops.update_idle(): called when a CPU is entering or exiting the idle state

CPU methods

• scx_bpf_select_cpu_dfl(): return the optimal idle CPU for a target task
• scx_bpf_pick_idle_cpu(): return an idle CPU usable by a target task (if present)
• scx_bpf_pick_any_cpu(): return any CPU usable by a targe task
• scx_bpf_kick_cpu(): wakeup an idle CPU or trigger a reschedule event

cpufreq integration (schedutil)

• scx_bpf_cpuperf_cap(): return the maximum relative capacity of a CPU in relation to the
most performant CPU in the system

• scx_bpf_cpuperf_cur(): return the current performance level of a CPU
• scx_bpf_cpuperf_set(): set the performance target of a CPU

• Performance level is in the range [1 .. SCX_CPUPERF_ONE]

sched_ext error handling

• If the BPF scheduler triggers an error, it is automatically terminated and a
trace is returned to the user-space program that loaded it

• A kernel watchdog monitors whether all tasks are scheduled at least once
within a configurable time; if any task fails to run within this time period, the
scheduler triggers a stall error

sched_ext error trace

CPU 6 : nr_run=1 flags=0x1 cpu_rel=0 ops_qseq=54 pnt_seq=11515
 curr=yes[298] class=rt_sched_class

 R kworker/6:1[155] -7168ms
 scx_state/flags=3/0x9 dsq_flags=0x0 ops_state/qseq=0/0
 sticky/holding_cpu=-1/-1 dsq_id=0x8000000000000002 dsq_vtime=1054861 slice=20000000
 cpus=40

 kthread+0xdf/0x110
 ret_from_fork+0x31/0x50
 ret_from_fork_asm+0x1a/0x30

sched_ext error trace

CPU 1 : nr_run=2 flags=0x1 cpu_rel=0 ops_qseq=1648 pnt_seq=10281
 curr=dxvk-shader-n[20288] class=ext_sched_class

 *R dxvk-shader-n[20288] -1ms
 scx_state/flags=3/0xd dsq_flags=0x0 ops_state/qseq=0/0
 sticky/holding_cpu=-1/-1 dsq_id=(n/a) dsq_vtime=101176519145
 cpus=3f

 R kworker/1:0[29] -5056ms
 scx_state/flags=3/0x9 dsq_flags=0x1 ops_state/qseq=0/0
 sticky/holding_cpu=-1/-1 dsq_id=0x0 dsq_vtime=0
 cpus=02

 kthread+0x14a/0x170
 ret_from_fork+0x37/0x50
 ret_from_fork_asm+0x1a/0x30

Hands-on

How to get started with sched_ext

• Make sure your kernel has CONFIG_SCHED_CLASS_EXT=y
• Clone the scx git repository

– https://github.com/sched-ext/scx
• Demo branch

– https://github.com/sched-ext/scx/tree/demo
• Kernel experimentation (hint: use virtme-ng)

– https://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git

https://github.com/sched-ext/scx
https://github.com/sched-ext/scx/tree/demo
https://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git/

Future plans

• Improve schedulers composability
• Allow to load multiple scx schedulers at the same time
• More in-kernel statistics
• Improve built-in functionalities (i.e., built-in idle selection policy)
• Paravirtualization / cooperative scheduling
• Device / IRQ affinity

References
• scx git repository

– https://github.com/sched-ext/scx
• sched_ext kernel repository

– https://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git
• sched_ext slack channel

– https://bit.ly/scx_slack
• Earliest Eligible Virtual Deadline First (EEVDF): A flexible and Accurate Mechanism for

Proportional Share Resource Allocation
– https://citeseerx.ist.psu.edu/document?doi=805acf7726282721504c8f00575d91ebfd750564

• The Linux Scheduler: a Decade of Wasted Cores
– https://people.ece.ubc.ca/sasha/papers/eurosys16-final29.pdf

• Rust user-space scheduler template
– https://github.com/arighi/scx_rust_scheduler

https://github.com/sched-ext/scx
https://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git/
https://bit.ly/scx_slack
https://citeseerx.ist.psu.edu/document?doi=805acf7726282721504c8f00575d91ebfd750564
https://people.ece.ubc.ca/sasha/papers/eurosys16-final29.pdf
https://github.com/arighi/scx_rust_scheduler

We hope it will be helpful in your journey to learning more about effective and productive
participation in open source projects. We will leave you with a few additional resources for
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills
and resources to experiment, learn and contribute effectively to open source
communities.

● Outreachy remote internships program supports diversity in open source and free
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels
and topics, as well as the chance to meet others in the community, to collaborate,
exchange ideas, expand job opportunities and more. You can find all events at
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

